summaryrefslogtreecommitdiff
path: root/Trivac/src/VALU5B.f
blob: fe617538b22edbb4c7e4057cfead2a5071d24421 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
*DECK VALU5B
      SUBROUTINE VALU5B (KPMAC,NX,NY,LL4F,LL4X,NUN,NMIX,X,Y,XXX,YYY,
     1 EVT,ISS,KFLX,KN,IXLG,IYLG,ICORN,AXY)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Interpolation of the flux distribution for nodal method in 2D.
*
*Copyright:
* Copyright (C) 2021 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* KPMAC   group directory in the macrolib.
* NX      number of elements along the X axis.
* NY      number of elements along the Y axis.
* LL4F    number of averaged flux unknowns.
* LL4X    number of X-directed net currents.
* NUN     dimension of unknown array EVT.
* NMIX    number of mixtures.
* X       Cartesian coordinates along the X axis where the flux is
*         interpolated.
* Y       Cartesian coordinates along the Y axis where the flux is
*         interpolated.
* XXX     Cartesian coordinates along the X axis.
* YYY     Cartesian coordinates along the Y axis.
* EVT     reconstruction coefficients of the flux.
* ISS     mixture index assigned to each element.
* KFLX    correspondence between local and global numbering.
* KN      element-ordered interface net current unknown list.
* IXLG    number of interpolated points according to X.
* IYLG    number of interpolated points according to Y.
* ICORN   flag to activate corner flux correction (0/1: OFF/ON).
*                                                                      
*Parameters: output
* AXY     interpolated fluxes.
*                                                                      
*----------------------------------------------------------------------
*
      USE GANLIB
*----
*  SUBROUTINE ARGUMENTS
*----
      TYPE(C_PTR) KPMAC
      INTEGER NX,NY,LL4F,LL4X,NUN,NMIX,ISS(NX*NY),KFLX(NX*NY),
     1 KN(6,NX,NY),IXLG,IYLG,ICORN
      REAL X(IXLG),Y(IYLG),XXX(NX+1),YYY(NY+1),EVT(NUN),AXY(IXLG,IYLG)
*----
*  LOCAL VARIABLES
*----
      DOUBLE PRECISION  WORK1(4,5),FC2(4)
      DOUBLE PRECISION GAR,COEFX,COEFY,U,V,P2U,P2V
      LOGICAL LOGC1,LOGC2
*----
*  ALLOCATABLE ARRAYS
*----
      REAL, ALLOCATABLE, DIMENSION(:) :: DIFF
      DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:,:) :: FCORN,DELC
*----
*  RECOVER DIFFUSION COEFFICIENTS
*----
      ALLOCATE(DIFF(NMIX))
      CALL LCMGET(KPMAC,'DIFF',DIFF)
*----
*  COMPUTE CORNER FLUXES
*----
      ALLOCATE(DELC(4,NX,NY))
      DELC(:4,:NX,:NY)=0.D0
      IF(ICORN==1) THEN
        ALLOCATE(FCORN(4,NX,NY))
        FCORN(:4,:NX,:NY)=0.D0
        DO JS=1,NY
          DO IS=1,NX
            IEL=(JS-1)*NX+IS
            IND1=KFLX(IEL)
            IF(IND1.EQ.0) CYCLE
            IBM=ISS(IEL)
            IF(IBM.LE.0) CYCLE
            JXM=KN(1,IS,JS) ; JXP=KN(2,IS,JS)
            JYM=KN(3,IS,JS) ; JYP=KN(4,IS,JS)
            COEFX=DIFF(IBM)/(XXX(IS+1)-XXX(IS))
            COEFY=DIFF(IBM)/(YYY(JS+1)-YYY(JS))
*
            WORK1(:,:)=0.0
            WORK1(1,1)=-0.5
            WORK1(1,2)=0.5
            WORK1(1,5)=EVT(LL4F+IND1)-EVT(IND1)
            WORK1(2,1)=0.5
            WORK1(2,2)=0.5
            WORK1(2,5)=EVT(2*LL4F+IND1)-EVT(IND1)
            WORK1(3,1)=-COEFX
            WORK1(3,2)=3.0*COEFX
            IF(JXM.NE.0) WORK1(3,5)=EVT(5*LL4F+JXM)
            WORK1(4,1)=-COEFX
            WORK1(4,2)=-3.0*COEFX
            IF(JXP.NE.0) WORK1(4,5)=EVT(5*LL4F+JXP)
            WORK1(3,3)=-0.5*COEFX
            WORK1(3,4)=0.2*COEFX
            WORK1(4,3)=-0.5*COEFX
            WORK1(4,4)=-0.2*COEFX
            CALL ALSBD(4,1,WORK1,IER,4)
            IF(IER.NE.0) CALL XABORT('VALU5B: SINGULAR MATRIX(1).')
            DO IC=1,4
              SELECT CASE(IC)
              CASE(1,3)
                U=-0.5
              CASE DEFAULT
                U=0.5
              END SELECT
              GAR=EVT(IND1)+WORK1(1,5)*U+WORK1(2,5)*(3.0*U**2-0.25)
              GAR=GAR+WORK1(3,5)*(U**2-0.25)*U+WORK1(4,5)*(U**2-0.25)*
     1        (U**2-0.05)
              FCORN(IC,IS,JS)=GAR
            ENDDO
*
            WORK1(:,:)=0.0
            WORK1(1,1)=-0.5
            WORK1(1,2)=0.5
            WORK1(1,5)=EVT(3*LL4F+IND1)-EVT(IND1)
            WORK1(2,1)=0.5
            WORK1(2,2)=0.5
            WORK1(2,5)=EVT(4*LL4F+IND1)-EVT(IND1)
            WORK1(3,1)=-COEFY
            WORK1(3,2)=3.0*COEFY
            IF(JYM.NE.0) WORK1(3,5)=EVT(5*LL4F+LL4X+JYM)
            WORK1(4,1)=-COEFY
            WORK1(4,2)=-3.0*COEFY
            IF(JYP.NE.0) WORK1(4,5)=EVT(5*LL4F+LL4X+JYP)
            WORK1(3,3)=-0.5*COEFY
            WORK1(3,4)=0.2*COEFY
            WORK1(4,3)=-0.5*COEFY
            WORK1(4,4)=-0.2*COEFY
            CALL ALSBD(4,1,WORK1,IER,4)
            IF(IER.NE.0) CALL XABORT('VALU5B: SINGULAR MATRIX(2).')
            DO IC=1,4
              SELECT CASE(IC)
              CASE(1,2)
                V=-0.5
              CASE DEFAULT
                V=0.5
              END SELECT
              GAR=FCORN(IC,IS,JS)+WORK1(1,5)*V+WORK1(2,5)*
     1        (3.0*V**2-0.25)
              GAR=GAR+WORK1(3,5)*(V**2-0.25)*V+WORK1(4,5)*(V**2-0.25)*
     1        (V**2-0.05)
              FCORN(IC,IS,JS)=GAR
            ENDDO
          ENDDO
        ENDDO
        DO JS=1,NY
          DO IS=1,NX
            IEL=(JS-1)*NX+IS
            IND1=KFLX(IEL)
            IF(IND1.EQ.0) CYCLE
            ! corner 1
            NB=1; GAR=FCORN(1,IS,JS)
            LOGC1=(IS>1) ; LOGC2=(JS>1)
            IF(LOGC2) LOGC2=(KFLX((JS-2)*NX+IS)>0)
            IF(LOGC1) THEN
              IF(KFLX((JS-1)*NX+IS-1)>0) THEN
                NB=NB+1 ;GAR=GAR+FCORN(2,IS-1,JS)
              ENDIF
            ENDIF
            IF(LOGC2) THEN
              IF(KFLX((JS-2)*NX+IS)>0) THEN
                NB=NB+1 ;GAR=GAR+FCORN(3,IS,JS-1)
              ENDIF
            ENDIF
            IF(LOGC1.AND.LOGC2) THEN
              IF(KFLX((JS-2)*NX+IS-1)>0) THEN
                NB=NB+1 ;GAR=GAR+FCORN(4,IS-1,JS-1)
              ENDIF
            ENDIF
            FC2(1)=GAR/REAL(NB)-FCORN(1,IS,JS)
            ! corner 2
            NB=1 ;GAR=FCORN(2,IS,JS)
            LOGC1=(IS<NX) ; LOGC2=(JS>1)
            IF(LOGC1) THEN
              IF(KFLX((JS-1)*NX+IS+1)>0) THEN
                NB=NB+1 ;GAR=GAR+FCORN(1,IS+1,JS)
              ENDIF
            ENDIF
            IF(LOGC2) THEN
              IF(KFLX((JS-2)*NX+IS)>0) THEN
                NB=NB+1 ;GAR=GAR+FCORN(4,IS,JS-1)
              ENDIF
            ENDIF
            IF(LOGC1.AND.LOGC2) THEN
              IF(KFLX((JS-2)*NX+IS+1)>0) THEN
                NB=NB+1 ;GAR=GAR+FCORN(3,IS+1,JS-1)
              ENDIF
            ENDIF
            FC2(2)=GAR/REAL(NB)-FCORN(2,IS,JS)
            ! corner 3
            NB=1 ; GAR=FCORN(3,IS,JS)
            LOGC1=(IS>1) ; LOGC2=(JS<NY)
            IF(LOGC1) THEN
              IF(KFLX((JS-1)*NX+IS-1)>0) THEN
                NB=NB+1 ; GAR=GAR+FCORN(4,IS-1,JS)
              ENDIF
            ENDIF
            IF(LOGC2) THEN
              IF(KFLX(JS*NX+IS)>0) THEN
                NB=NB+1 ; GAR=GAR+FCORN(1,IS,JS+1)
              ENDIF
            ENDIF
            IF(LOGC1.AND.LOGC2) THEN
              IF(KFLX(JS*NX+IS-1)>0) THEN
                NB=NB+1 ; GAR=GAR+FCORN(2,IS-1,JS+1)
              ENDIF
            ENDIF
            FC2(3)=GAR/REAL(NB)-FCORN(3,IS,JS)
            ! corner 4
            NB=1
            GAR=FCORN(4,IS,JS)
            LOGC1=(IS<NX)
            IF(LOGC1) LOGC1=(KFLX((JS-1)*NX+IS+1)>0)
            LOGC2=(JS<NY)
            IF(LOGC2) LOGC2=(KFLX(JS*NX+IS)>0)
            IF(LOGC1) THEN
              IF(KFLX((JS-1)*NX+IS+1)>0) THEN
                NB=NB+1 ; GAR=GAR+FCORN(3,IS+1,JS)
              ENDIF
            ENDIF
            IF(LOGC2) THEN
              IF(KFLX(JS*NX+IS)>0) THEN
                NB=NB+1 ; GAR=GAR+FCORN(2,IS,JS+1)
              ENDIF
            ENDIF
            IF(LOGC1.AND.LOGC2) THEN
              IF(KFLX(JS*NX+IS+1)>0) THEN
                NB=NB+1 ; GAR=GAR+FCORN(1,IS+1,JS+1)
              ENDIF
            ENDIF
            FC2(4)=GAR/REAL(NB)-FCORN(4,IS,JS)
            ! polynomial coefficients of correction terms
            DELC(1,IS,JS)= FC2(1)-FC2(2)-FC2(3)+FC2(4)
            DELC(2,IS,JS)=-FC2(1)-FC2(2)+FC2(3)+FC2(4)
            DELC(3,IS,JS)=-FC2(1)+FC2(2)-FC2(3)+FC2(4)
            DELC(4,IS,JS)= FC2(1)+FC2(2)+FC2(3)+FC2(4)
          ENDDO
        ENDDO
        DEALLOCATE(FCORN)
      ENDIF
*----
*  PERFORM INTERPOLATION
*----
      DO J=1,IYLG
        ORDO=Y(J)
        DO I=1,IXLG
          ABSC=X(I)
          GAR=0.0D0
*                                                          
*         Find the node index containing the interpolation point
          IS=0; JS=0
          DO L=1,NX
            IS=L
            IF((ABSC.GE.XXX(L)).AND.(ABSC.LE.XXX(L+1))) GO TO 10
          ENDDO
          CALL XABORT('VALU5B: WRONG INTERPOLATION(1).')
   10     DO L=1,NY
            JS=L
            IF((ORDO.GE.YYY(L)).AND.(ORDO.LE.YYY(L+1))) GO TO 20
          ENDDO
          CALL XABORT('VALU5B: WRONG INTERPOLATION(2).')
   20     IEL=(JS-1)*NX+IS
          IND1=KFLX(IEL)
          IF(IND1.EQ.0) GO TO 30
          IBM=ISS(IEL)
          IF(IBM.LE.0) GO TO 30
          JXM=KN(1,IS,JS) ; JXP=KN(2,IS,JS)
          JYM=KN(3,IS,JS) ; JYP=KN(4,IS,JS)
          COEFX=DIFF(IBM)/(XXX(IS+1)-XXX(IS))
          COEFY=DIFF(IBM)/(YYY(JS+1)-YYY(JS))
          U=(ABSC-XXX(IS))/(XXX(IS+1)-XXX(IS))-0.5
          V=(ORDO-YYY(JS))/(YYY(JS+1)-YYY(JS))-0.5
          GAR=EVT(IND1)
*
          WORK1(:,:)=0.0
          WORK1(1,1)=-0.5
          WORK1(1,2)=0.5
          WORK1(1,5)=EVT(LL4F+IND1)-EVT(IND1)
          WORK1(2,1)=0.5
          WORK1(2,2)=0.5
          WORK1(2,5)=EVT(2*LL4F+IND1)-EVT(IND1)
          WORK1(3,1)=-COEFX
          WORK1(3,2)=3.0*COEFX
          IF(JXM.NE.0) WORK1(3,5)=EVT(5*LL4F+JXM)
          WORK1(4,1)=-COEFX
          WORK1(4,2)=-3.0*COEFX
          IF(JXP.NE.0) WORK1(4,5)=EVT(5*LL4F+JXP)
          WORK1(3,3)=-0.5*COEFX
          WORK1(3,4)=0.2*COEFX
          WORK1(4,3)=-0.5*COEFX
          WORK1(4,4)=-0.2*COEFX
          CALL ALSBD(4,1,WORK1,IER,4)
          IF(IER.NE.0) CALL XABORT('VALU5B: SINGULAR MATRIX(3).')
          GAR=GAR+WORK1(1,5)*U+WORK1(2,5)*(3.0*U**2-0.25)
          GAR=GAR+WORK1(3,5)*(U**2-0.25)*U+WORK1(4,5)*(U**2-0.25)*
     1    (U**2-0.05)
*
          WORK1(:,:)=0.0
          WORK1(1,1)=-0.5
          WORK1(1,2)=0.5
          WORK1(1,5)=EVT(3*LL4F+IND1)-EVT(IND1)
          WORK1(2,1)=0.5
          WORK1(2,2)=0.5
          WORK1(2,5)=EVT(4*LL4F+IND1)-EVT(IND1)
          WORK1(3,1)=-COEFY
          WORK1(3,2)=3.0*COEFY
          IF(JYM.NE.0) WORK1(3,5)=EVT(5*LL4F+LL4X+JYM)
          WORK1(4,1)=-COEFY
          WORK1(4,2)=-3.0*COEFY
          IF(JYP.NE.0) WORK1(4,5)=EVT(5*LL4F+LL4X+JYP)
          WORK1(3,3)=-0.5*COEFY
          WORK1(3,4)=0.2*COEFY
          WORK1(4,3)=-0.5*COEFY
          WORK1(4,4)=-0.2*COEFY
          CALL ALSBD(4,1,WORK1,IER,4)
          IF(IER.NE.0) CALL XABORT('VALU5B: SINGULAR MATRIX(4).')
          GAR=GAR+WORK1(1,5)*V+WORK1(2,5)*(3.0*V**2-0.25)
          GAR=GAR+WORK1(3,5)*(V**2-0.25)*V+WORK1(4,5)*(V**2-0.25)*
     1    (V**2-0.05)
*
          IF(ICORN==1) THEN
            ! perform interpolation of corner flux correction
            P2U=3.0*U**2-0.25 ; P2V=3.0*V**2-0.25
            GAR=GAR+DELC(1,IS,JS)*U*V + DELC(2,IS,JS)*P2U*V+
     1      DELC(3,IS,JS)*U*P2V + DELC(4,IS,JS)*P2U*P2V
          ENDIF
   30     AXY(I,J)=REAL(GAR)
        ENDDO
      ENDDO
      DEALLOCATE(DELC,DIFF)
      RETURN
      END