1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
|
*DECK VAL
SUBROUTINE VAL(NENTRY,HENTRY,IENTRY,JENTRY,KENTRY)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Interpolate the flux distribution.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): R. Chambon
*
*Parameters: input/output
* NENTRY number of LCM objects or files used by the operator.
* HENTRY name of each LCM object or file:
* HENTRY(1): create type(L_FVIEW);
* HENTRY(2): read-only type(L_TRACK);
* HENTRY(3): read-only type(L_FLUX).
* HENTRY(4): read-only type(L_MACROLIB).
* IENTRY type of each LCM object or file:
* =1 LCM memory object; =2 XSM file; =3 sequential binary file;
* =4 sequential ascii file.
* JENTRY access of each LCM object or file:
* =0 the LCM object or file is created;
* =1 the LCM object or file is open for modifications;
* =2 the LCM object or file is open in read-only mode.
* KENTRY LCM object address or file unit number.
*
*Comments:
* The VAL: calling specifications are:
* IFLU := VAL: TRKNAM FLUNAM :: (descval) ;
* where
* IFLU : name of the \dds{interpflux} data structure (L\_FVIEW} signature)
* where the interpolated flux distribution will be stored.
* TRKNAM : name of the read-only \dds{tracking} data structure (L\_TRACK
* signature) containing the tracking.
* FLUNAM : name of the read-only \dds{fluxunk} data structure (L\_FLUX
* signature) containing a transport solution.
* descval : structure containing the input data to this module to compute
* interpolated flux
*
*
*-----------------------------------------------------------------------
*
USE GANLIB
IMPLICIT NONE
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER NENTRY,IENTRY(NENTRY),JENTRY(NENTRY)
TYPE(C_PTR) KENTRY(NENTRY)
CHARACTER HENTRY(NENTRY)*12
*----
* LOCAL VARIABLES
*----
INTEGER NSTATE
PARAMETER (NSTATE=40)
CHARACTER TEXT12*12,HSIGN*12,CMODUL*12
INTEGER INDIC,NITMA
DOUBLE PRECISION DFLOT,ZNORM,XDRCST,EVJ
REAL FLOT
REAL DX,DY,DZ,POWER
LOGICAL L2D,L3D
INTEGER IGP(NSTATE),IFL(NSTATE),IFV(NSTATE),IMV(NSTATE),NXD,NYD,
1 NZD,IELEM,NUN,IMPX,DIM,NG,NLF,NXI,NYI,NZI,NREG,ICHX,IDIM,ITYPE,
2 L4,MAXKN,MKN,LC,ITYLCM,IREG,IGMAX,NMIX,NBFIS,IBM,IFISS,LENGT,
3 LL4F,LL4X,LL4Y,ITRIAL,ICORN
INTEGER I,IG,J,K
REAL E(25)
TYPE(C_PTR) IPFVW,IPTRK,IPFLU,JPFLU,JPFVW,IPMAC,JPMAC,KPMAC
*----
* ALLOCATABLE ARRAYS
*----
INTEGER, DIMENSION(:), ALLOCATABLE :: MAT,KFLX,KN
REAL, DIMENSION(:), ALLOCATABLE :: XX,YY,ZZ,MXD,MYD,MZD,MXI,MYI,
1 MZI,FLXD,XXX,YYY,ZZZ,SGD,VOL
REAL, DIMENSION(:,:), ALLOCATABLE :: FXYZ
REAL, DIMENSION(:,:), ALLOCATABLE :: ZUFIS
*----
* PARAMETER VALIDATION
*----
IF((NENTRY.NE.3).AND.(NENTRY.NE.4)) THEN
CALL XABORT('VAL: 3 OR 4 PARAMETERS EXPECTED.')
ENDIF
IPMAC=C_NULL_PTR
IF((IENTRY(1).NE.1).AND.(IENTRY(1).NE.2)) CALL XABORT('FLD: LCM '
1 //'OBJECT EXPECTED AT LHS.')
IF(JENTRY(1).NE.0) CALL XABORT('VAL: ENTRY IN CREATE MODE '
1 //'EXPECTED.')
IPFVW=KENTRY(1)
DO I=2,NENTRY
IF(JENTRY(I).NE.2) CALL XABORT('VAL: LCM OBJECT IN READ-ONLY '
1 //'MODE EXPECTED AT RHS.')
CALL LCMGTC(KENTRY(I),'SIGNATURE',12,HSIGN)
IF(HSIGN.EQ.'L_FLUX') THEN
IPFLU=KENTRY(I)
ELSEIF(HSIGN.EQ.'L_TRACK') THEN
IPTRK=KENTRY(I)
CALL LCMGTC(IPTRK,'TRACK-TYPE',12,CMODUL)
ELSEIF(HSIGN.EQ.'L_MACROLIB') THEN
IPMAC=KENTRY(I)
ELSE
TEXT12=HENTRY(I)
CALL XABORT('VAL: SIGNATURE OF '//TEXT12//' IS '//HSIGN//
1 '. L_FLUX, L_TRACK OR L_MACROLIB EXPECTED.')
ENDIF
ENDDO
HSIGN='L_FVIEW'
CALL LCMPTC(KENTRY(1),'SIGNATURE',12,HSIGN)
L2D=.TRUE.
L3D=.TRUE.
*
CALL LCMGET(IPFLU,'STATE-VECTOR',IFL)
NG=IFL(1)
*----
* RECOVER GENERAL TRACKING INFORMATION
*----
CALL LCMGET(IPTRK,'STATE-VECTOR',IGP)
NREG=IGP(1)
NUN=IGP(2)
ITYPE=IGP(6)
NLF=0
ICHX=0
IDIM=1
LL4F=0
LL4X=0
LL4Y=0
IGMAX=NG+1
IF((ITYPE.EQ.5).OR.(ITYPE.EQ.6).OR.(ITYPE.EQ.8)) IDIM=2
IF((ITYPE.EQ.7).OR.(ITYPE.EQ.9)) IDIM=3
IF(CMODUL.EQ.'BIVAC') THEN
L3D=.FALSE.
IELEM=IGP(8)
NLF=IGP(14)
NXD=IGP(12)
NYD=IGP(13)
NZD=1
IF(NYD.EQ.0) L2D=.FALSE.
CALL XABORT('VAL: BIVAC is currently not supported.')
ELSE IF(CMODUL.EQ.'TRIVAC') THEN
L3D=.TRUE.
IELEM=IGP(9)
L4=IGP(11)
ICHX=IGP(12)
NLF=IGP(30)
NXD=IGP(14)
NYD=IGP(15)
NZD=IGP(16)
LL4F=IGP(25)
LL4X=IGP(27)
LL4Y=IGP(28)
IGMAX=IGP(39)
IF(NYD.EQ.0) L2D=.FALSE.
IF(NZD.EQ.0) L3D=.FALSE.
NZD=MAX(1,NZD)
ENDIF
*----
* READ INPUTS
*----
IMPX=0
DX=1.
DY=1.
DZ=1.
ZNORM=1.0D0
ICORN=1
10 CALL REDGET(INDIC,NITMA,FLOT,TEXT12,DFLOT)
IF(INDIC.NE.3) CALL XABORT('VAL: character data expected.')
IF(TEXT12.EQ.'EDIT') THEN
CALL REDGET(INDIC,IMPX,FLOT,TEXT12,DFLOT)
IF(INDIC.NE.1) CALL XABORT('VAL: integer data expected.')
ELSE IF(TEXT12.EQ.'MODE') THEN
CALL REDGET(INDIC,NITMA,FLOT,TEXT12,DFLOT)
IF(INDIC.NE.1) CALL XABORT('VAL: integer data expected.')
JPFLU=LCMGID(IPFLU,'MODE')
IPFLU=LCMGIL(JPFLU,NITMA)
ELSE IF(TEXT12.EQ.'DIM') THEN
CALL REDGET(INDIC,DIM,FLOT,TEXT12,DFLOT)
IF((DIM.LE.0).OR.(DIM.GE.4)) CALL XABORT('VAL: 1<=DIM<=3 expec'
1 //'ted.')
CALL REDGET(INDIC,NITMA,DX,TEXT12,DFLOT)
IF(DIM.GE.2) CALL REDGET(INDIC,NITMA,DY,TEXT12,DFLOT)
IF(DIM.EQ.3) CALL REDGET(INDIC,NITMA,DZ,TEXT12,DFLOT)
ELSE IF(TEXT12.EQ.'POWR') THEN
* NORMALIZATION TO A GIVEN FISSION POWER.
IF(.NOT.C_ASSOCIATED(IPMAC)) CALL XABORT('VAL: MISSING RHS MAC'
1 //'ROLIB.')
CALL LCMGET(IPMAC,'STATE-VECTOR',IMV)
NMIX=IMV(2)
NBFIS=IMV(4)
ALLOCATE(MAT(NREG),KFLX(NREG),VOL(NREG),FLXD(NUN),SGD(NMIX))
CALL LCMGET(IPTRK,'MATCOD',MAT)
CALL LCMGET(IPTRK,'KEYFLX',KFLX)
CALL LCMGET(IPTRK,'VOLUME',VOL)
CALL REDGET (INDIC,NITMA,POWER,TEXT12,DFLOT) ! power in MW
IF(INDIC.NE.2) CALL XABORT('VAL: REAL DATA EXPECTED.')
* NORMALIZATION FACTOR FOR THE DIRECT FLUX.
EVJ=XDRCST('eV','J')
ZNORM=0.0D0
JPFLU=LCMGID(IPFLU,'FLUX')
JPMAC=LCMGID(IPMAC,'GROUP')
DO IG=1,NG
CALL LCMGDL(JPFLU,IG,FLXD)
KPMAC=LCMGIL(JPMAC,IG)
CALL LCMLEN(KPMAC,'H-FACTOR',LENGT,ITYLCM)
IF(LENGT.GT.0) THEN
CALL LCMGET(KPMAC,'H-FACTOR',SGD)
ELSE
! assume 2.5 n and 200 MeV per fission
WRITE(6,'(/44H VAL: *** WARNING *** NO H-FACTOR FOUND ON L,
1 24HCM. USE NU*SIGF INSTEAD.)')
ALLOCATE(ZUFIS(NMIX,NBFIS))
SGD(:NMIX)=0.0
CALL LCMGET(KPMAC,'NUSIGF',ZUFIS)
DO IBM=1,NMIX
DO IFISS=1,NBFIS
SGD(IBM)=SGD(IBM)+ZUFIS(IBM,IFISS)*2.0E8/2.5
ENDDO
ENDDO
DEALLOCATE(ZUFIS)
ENDIF
DO 20 K=1,NREG
IBM=MAT(K)
IF((IBM.EQ.0).OR.(KFLX(K).EQ.0)) GO TO 20
ZNORM=ZNORM+FLXD(KFLX(K))*VOL(K)*SGD(IBM)*EVJ
20 CONTINUE
ENDDO
ZNORM=POWER*1.0D6/ZNORM
WRITE(6,300) ' DIRECT',ZNORM
DEALLOCATE(SGD,FLXD,VOL,KFLX,MAT)
ELSE IF(TEXT12.EQ.'NOCCOR') THEN
ICORN=0
ELSE IF(TEXT12.EQ.'CCOR') THEN
ICORN=1
ELSE IF(TEXT12.EQ.';') THEN
GO TO 30
ELSE
CALL XABORT('VAL: unknownn keyword-->'//TEXT12)
ENDIF
GO TO 10
*----
* Get Data in L_TRACK
*----
30 ALLOCATE(MAT(NREG),KFLX(NREG))
CALL LCMGET(IPTRK,'MATCOD',MAT)
CALL LCMGET(IPTRK,'KEYFLX',KFLX)
ALLOCATE(MXD(NXD+1),MYD(NYD+1),MZD(NZD+1))
ALLOCATE(XX(NREG),YY(NREG),ZZ(NREG))
CALL LCMGET(IPTRK,'XX',XX)
IF(L2D) CALL LCMGET(IPTRK,'YY',YY)
IF(L3D) CALL LCMGET(IPTRK,'ZZ',ZZ)
*----
* Compute X and Y mesh from L_TRACK
*----
ALLOCATE(XXX(NXD),YYY(NYD))
XXX(:NXD)=0.0
YYY(:NYD)=0.0
IREG=0
IF(L3D) THEN
ALLOCATE(ZZZ(NZD))
ZZZ(:NZD)=0.0
DO K=1,NZD
DO J=1,NYD
DO I=1,NXD
IREG=IREG+1
IF(XX(IREG).NE.0.0) THEN
IF(XXX(I).EQ.0.0) THEN
XXX(I)=XX(IREG)
ELSE IF(ABS(XXX(I)-XX(IREG)).GT.1.0E-6) THEN
CALL XABORT('VAL: inconsistent tracking in X')
ENDIF
ENDIF
IF(YY(IREG).NE.0.0) THEN
IF(YYY(J).EQ.0.0) THEN
YYY(J)=YY(IREG)
ELSE IF(ABS(YYY(J)-YY(IREG)).GT.1.0E-6) THEN
CALL XABORT('VAL: inconsistent tracking in Y')
ENDIF
ENDIF
IF(ZZ(IREG).NE.0.0) THEN
IF(ZZZ(K).EQ.0.0) THEN
ZZZ(K)=ZZ(IREG)
ELSE IF(ABS(ZZZ(K)-ZZ(IREG)).GT.1.0E-6) THEN
CALL XABORT('VAL: inconsistent tracking in Z')
ENDIF
ENDIF
ENDDO
ENDDO
ENDDO
ELSE IF(L2D) THEN
DO J=1,NYD
DO I=1,NXD
IREG=IREG+1
IF(XX(IREG).NE.0.0) THEN
IF(XXX(I).EQ.0.0) THEN
XXX(I)=XX(IREG)
ELSE IF(ABS(XXX(I)-XX(IREG)).GT.1.0E-6) THEN
CALL XABORT('VAL: inconsistent tracking in X')
ENDIF
ENDIF
IF(YY(IREG).NE.0.0) THEN
IF(YYY(J).EQ.0.0) THEN
YYY(J)=YY(IREG)
ELSE IF(ABS(YYY(J)-YY(IREG)).GT.1.0E-6) THEN
CALL XABORT('VAL: inconsistent tracking in Y')
ENDIF
ENDIF
ENDDO
ENDDO
ELSE
DO I=1,NXD
IREG=IREG+1
IF(XX(IREG).NE.0.0) THEN
IF(XXX(I).EQ.0.0) THEN
XXX(I)=XX(IREG)
ELSE IF(ABS(XXX(I)-XX(IREG)).GT.1.0E-6) THEN
CALL XABORT('VAL: inconsistent tracking in X')
ENDIF
ENDIF
ENDDO
ENDIF
IF(IREG.NE.NREG) CALL XABORT('VAL: invalid tracking')
MXD(1)=0.0
MYD(1)=0.0
MZD(1)=0.0
DO I=1,NXD
MXD(I+1)=MXD(I)+XXX(I)
ENDDO
IF(L2D) THEN
MYD(1)=0.0
DO I=1,NYD
MYD(I+1)=MYD(I)+YYY(I)
ENDDO
ELSE
MYD(2)=0.0
ENDIF
MZD(1)=0.0
IF(L3D) THEN
DO I=1,NZD
MZD(I+1)=MZD(I)+ZZZ(I)
ENDDO
DEALLOCATE(ZZZ)
ELSE
MZD(2)=0.0
ENDIF
DEALLOCATE(YYY,XXX)
*----
* Perform interpolation
*----
* Compute points to interpolate
NXI=INT((MXD(NXD+1)-MXD(1))/DX)+1
NYI=INT((MYD(NYD+1)-MYD(1))/DY)+1
NZI=INT((MZD(NZD+1)-MZD(1))/DZ)+1
ALLOCATE(MXI(NXI),MYI(NYI),MZI(NZI))
ALLOCATE(FXYZ(NXI*NYI*NZI,NG))
DO I=1,NXI
MXI(I)=MXD(1)+DX*REAL(I-1)
ENDDO
DO I=1,NYI
MYI(I)=MYD(1)+DY*REAL(I-1)
ENDDO
DO I=1,NZI
MZI(I)=MZD(1)+DZ*REAL(I-1)
ENDDO
JPFLU=LCMGID(IPFLU,'FLUX')
* Get Data in L_FLUX
ALLOCATE(FLXD(NUN))
IF((ICHX.EQ.4).OR.(ICHX.EQ.5).OR.(ICHX.EQ.6)) THEN
* recover removal xs and diffusion coefficients in JPMAC
IF(.NOT.C_ASSOCIATED(IPMAC)) CALL XABORT('VAL: MISSING RHS MAC'
1 //'ROLIB.')
CALL LCMGET(IPMAC,'STATE-VECTOR',IMV)
NMIX=IMV(2)
JPMAC=LCMGID(IPMAC,'GROUP')
ENDIF
DO IG=1,NG
CALL LCMGDL(JPFLU,IG,FLXD)
* Perform normalization
DO I=1,NUN
FLXD(I)=FLXD(I)*REAL(ZNORM)
ENDDO
* Perform interpolation
IF(L3D) THEN
IF(ICHX.EQ.1) THEN
* Variational collocation method
CALL LCMLEN(IPTRK,'KN',MAXKN,ITYLCM)
MKN=MAXKN/(NXD*NYD*NZD)
ALLOCATE(KN(MAXKN))
CALL LCMGET(IPTRK,'KN',KN)
CALL LCMSIX(IPTRK,'BIVCOL',1)
CALL LCMLEN(IPTRK,'T',LC,ITYLCM)
CALL LCMGET(IPTRK,'E',E)
CALL LCMSIX(IPTRK,' ',2)
CALL VALUE2(LC,MKN,NXD,NYD,NZD,L4,MXI,MYI,MZI,MXD,MYD,MZD,
1 FLXD,MAT,KN,NXI,NYI,NZI,E,FXYZ(1,IG))
DEALLOCATE(KN)
ELSE IF(ICHX.EQ.2) THEN
* Raviart-Thomas finite element method
CALL VALUE4(IELEM,NUN,NXD,NYD,NZD,MXI,MYI,MZI,MXD,MYD,MZD,
1 FLXD,MAT,KFLX,NXI,NYI,NZI,FXYZ(1,IG))
ELSE IF(ICHX.EQ.3) THEN
* Nodal collocation method (MCFD)
CALL VALUE1(IDIM,NXD,NYD,NZD,L4,MXI,MYI,MZI,MXD,MYD,MZD,
1 FLXD,MAT,IELEM,NXI,NYI,NZI,FXYZ(1,IG))
ELSE IF(ICHX.EQ.6) THEN
* Analytic nodal method (ANM)
IF(IMPX.GT.0) WRITE(6,320) ICORN
CALL LCMLEN(IPTRK,'KN',MAXKN,ITYLCM)
ALLOCATE(KN(MAXKN))
CALL LCMGET(IPTRK,'KN',KN)
KPMAC=LCMGIL(JPMAC,IG)
CALL VALU5(KPMAC,NXD,NYD,NZD,LL4F,LL4X,LL4Y,NUN,NMIX,MXI,
1 MYI,MZI,MXD,MYD,MZD,FLXD,MAT,KFLX,KN,NXI,NYI,NZI,ICORN,
2 FXYZ(1,IG))
DEALLOCATE(KN)
ELSE
CALL XABORT('VAL: INTERPOLATION NOT IMPLEMENTED(1).')
ENDIF
ELSE IF(L2D) THEN
IF(ICHX.EQ.1) THEN
* Variational collocation method
CALL LCMLEN(IPTRK,'KN',MAXKN,ITYLCM)
MKN=MAXKN/(NXD*NYD)
ALLOCATE(KN(MAXKN))
CALL LCMGET(IPTRK,'KN',KN)
CALL LCMSIX(IPTRK,'BIVCOL',1)
CALL LCMLEN(IPTRK,'T',LC,ITYLCM)
CALL LCMGET(IPTRK,'E',E)
CALL LCMSIX(IPTRK,' ',2)
CALL VALU2B(LC,MKN,NXD,NYD,L4,MXI,MYI,MXD,MYD,FLXD,MAT,KN,
1 NXI,NYI,E,FXYZ(1,IG))
ELSE IF(ICHX.EQ.2) THEN
* Raviart-Thomas finite element method
CALL VALU4B(IELEM,NUN,NXD,NYD,MXI,MYI,MXD,MYD,FLXD,MAT,
1 KFLX,NXI,NYI,FXYZ(1,IG))
ELSE IF(ICHX.EQ.3) THEN
* Nodal collocation method (MCFD)
CALL VALU1B(IDIM,NXD,NYD,L4,MXI,MYI,MXD,MYD,FLXD,MAT,IELEM,
1 NXI,NYI,FXYZ(1,IG))
ELSE IF(ICHX.EQ.6) THEN
* Analytic nodal method (ANM)
IF(IMPX.GT.0) WRITE(6,320) ICORN
CALL LCMLEN(IPTRK,'KN',MAXKN,ITYLCM)
ALLOCATE(KN(MAXKN))
CALL LCMGET(IPTRK,'KN',KN)
KPMAC=LCMGIL(JPMAC,IG)
CALL VALU5B(KPMAC,NXD,NYD,LL4F,LL4X,NUN,NMIX,MXI,MYI,MXD,
1 MYD,FLXD,MAT,KFLX,KN,NXI,NYI,ICORN,FXYZ(1,IG))
DEALLOCATE(KN)
ELSE
CALL XABORT('VAL: INTERPOLATION NOT IMPLEMENTED(2).')
ENDIF
ELSE
IF(ICHX.EQ.4) THEN
* Coarse mesh finite differences
KPMAC=LCMGIL(JPMAC,IG)
ITRIAL=0
CALL VALU5C(KPMAC,NXD,L4,NMIX,MXI,MXD,FLXD,MAT,NXI,ITRIAL,
1 FXYZ(1,IG))
ELSE IF((ICHX.EQ.5).OR.(ICHX.EQ.6)) THEN
* Nodal expansion method (NEM) or analytic nodal method (ANM)
KPMAC=LCMGIL(JPMAC,IG)
ITRIAL=1
IF((ICHX.EQ.5).AND.(IG.GE.IGMAX)) ITRIAL=2
CALL VALU5C(KPMAC,NXD,NUN,NMIX,MXI,MXD,FLXD,MAT,NXI,ITRIAL,
1 FXYZ(1,IG))
ELSE
CALL XABORT('VAL: INTERPOLATION NOT IMPLEMENTED(3).')
ENDIF
ENDIF
ENDDO
*----
* Save results
*----
CALL LCMPUT(IPFVW,'MXI',NXI,2,MXI)
IF(L2D) CALL LCMPUT(IPFVW,'MYI',NYI,2,MYI)
IF(L3D) CALL LCMPUT(IPFVW,'MZI',NZI,2,MZI)
IFV(:NSTATE)=0
IFV(1)=NG
IFV(2)=NXI
IFV(3)=NYI
IFV(4)=NZI
CALL LCMPUT(IPFVW,'STATE-VECTOR',NSTATE,1,IFV)
JPFVW=LCMLID(IPFVW,'FLUX',NG)
DO IG=1,NG
CALL LCMPDL(JPFVW,IG,NXI*NYI*NZI,2,FXYZ(1,IG))
ENDDO
*----
* Save results
*----
IF(IMPX.GE.1)THEN
WRITE(6,*) 'Mesh along X-direction'
WRITE(6,310) (MXI(I),I=1,NXI)
WRITE(6,*) 'Mesh along Y-direction'
WRITE(6,310) (MYI(I),I=1,NYI)
WRITE(6,*) 'Mesh along Z-direction'
WRITE(6,310) (MZI(I),I=1,NZI)
IF(IMPX.GE.2)THEN
WRITE(6,*) 'Flux distribution:'
DO IG=1,NG
WRITE(6,*) 'Group',IG
DO K=1,NZI
WRITE(6,*) 'Plane',K
DO J=1,NYI
WRITE(6,310) (FXYZ(I+(J-1+(K-1)*NYI)*NXI,IG),I=1,NXI)
ENDDO
ENDDO
ENDDO
ENDIF
ENDIF
*----
* RELEASE GENERAL TRACKING INFORMATION
*----
DEALLOCATE(FLXD)
DEALLOCATE(FXYZ)
DEALLOCATE(MXI,MYI,MZI)
DEALLOCATE(MXD,MYD,MZD)
DEALLOCATE(XX,YY,ZZ)
DEALLOCATE(KFLX,MAT)
RETURN
300 FORMAT(/6H VAL: ,A7,28H FLUX NORMALIZATION FACTOR =,1P,E13.5)
310 FORMAT(1X,1P,12E12.4)
320 FORMAT(/43H VAL: CORNER FLUX CORRECTION (0/1: OFF/ON)=,I3)
END
|