1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
|
*DECK TRITRK
SUBROUTINE TRITRK (MAXPTS,IPTRK,IPGEOM,IMPX,IELEM,ICOL,ICHX,ISEG,
1 IMPV,NLF,NVD,ISPN,ISCAT,NADI)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Recover of the geometry and tracking for TRIVAC.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* MAXPTS allocated storage for arrays of dimension NEL.
* IPTRK L_TRACK pointer to the TRIVAC tracking information.
* IPGEOM L_GEOM pointer to the geometry.
* IMPX print flag.
* IELEM degree of the Lagrangian finite elements:
* =1: linear finite elements or finite differences;
* =2: parabolic finite elements;
* =3: cubic finite elements;
* =4: quartic finite elements.
* ICOL type of quadrature used to integrate the mass matrix:
* =1: analytical integration;
* =2: Gauss-Lobatto quadrature (collocation method);
* =3: Gauss-Legendre quadrature (superconvergent)
* IELEM=1 and ICOL=2 are finite difference approximations.
* ICHX type of discretization method:
* =1: variational collocation method (primal finite elements
* with Gauss-Lobatto quadrature);
* =2: dual finite element approximations;
* =3: nodal collocation method with full tensorial products
* (dual finite elements with Gauss-Lobatto quadrature).
* ISEG number of elements in a vector register. Equal to zero for
* operations in scalar mode.
* IMPV print parameter for supervectorial operations.
* NLF number of Legendre orders for the flux. Equal to zero for
* diffusion theory.
* NVD type of void boundary condition if NLF>0 and ICOL=3.
* ISPN type of transport solution:
* =0: complete PN method;
* =1: simplified PN method.
* ISCAT source anisotropy:
* =1: isotropic sources in laboratory system;
* =2: linearly anisotropic sources in laboratory system.
* NADI number of ADI iterations at the inner iterative level.
*
*-----------------------------------------------------------------------
*
USE GANLIB
*----
* SUBROUTINE ARGUMENTS
*----
TYPE(C_PTR) IPTRK,IPGEOM
INTEGER MAXPTS,IMPX,IELEM,ICOL,ICHX,ISEG,IMPV,NLF,NVD,ISPN,ISCAT,
1 NADI
*----
* LOCAL VARIABLES
*----
PARAMETER (NSTATE=40)
LOGICAL ILK,CYLIND,CHEX
CHARACTER HSMG*131
INTEGER ISTATE(NSTATE),IGP(NSTATE),NCODE(6),ICODE(6)
REAL ZCODE(6)
INTEGER, DIMENSION(:), ALLOCATABLE :: MAT,IDL,IPERT,KN,IQFR,IDP,
1 IMX,ISPLX,ISPLY,ISPLZ,MUW,MUX,MUY,MUZ,IPW,IPX,IPY,IPZ,ISET
REAL, DIMENSION(:), ALLOCATABLE :: VOL,XXX,YYY,ZZZ,XX,YY,ZZ,DD,
1 QFR,FRZ,RR0,XR0,ANG
REAL, DIMENSION(:,:), ALLOCATABLE :: V,H
DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: CTRAN
INTEGER, DIMENSION(:), ALLOCATABLE :: NBLW,LBLW,MUVW,IPVW,NBLX,
1 LBLX,MUVX,IPVX,NBLY,LBLY,MUVY,IPVY,NBLZ,LBLZ,MUVZ,IPVZ
REAL, DIMENSION(:), ALLOCATABLE :: BBW,BBX,BBY,BBZ
INTEGER, DIMENSION(:), ALLOCATABLE :: IPBBW,IPBBX,IPBBY,IPBBZ
*
******************* TRIVAC GEOMETRICAL STRUCTURE. **********************
* *
* ITYPE : =2 : CARTESIAN 1-D GEOMETRY; *
* =3 : TUBE 1-D GEOMETRY; *
* =5 : CARTESIAN 2-D GEOMETRY; *
* =6 : TUBE 2-D GEOMETRY; *
* =7 : CARTESIAN 3-D GEOMETRY; *
* =8 : HEXAGONAL 2-D GEOMETRY; *
* =9 : HEXAGONAL 3-D GEOMETRY. *
* IHEX : TYPE OF HEXAGONAL SYMMETRY. *
* IDIAG : =0 NO DIAGONAL SYMMETRY; =1 DIAGONAL SYMMETRY. *
* IELEM : DEGREE OF THE LAGRANGIAN FINITE ELEMENTS. *
* =1: LINEAR FINITE ELEMENTS OR FINITE DIFFERENCES; *
* =2: PARABOLIC FINITE ELEMENTS; *
* =3: CUBIC FINITE ELEMENTS; *
* =4: QUARTIC FINITE ELEMENTS. *
* ICOL : TYPE OF QUADRATURE USED TO INTEGRATE THE MASS MATRIX.*
* =1: ANALYTICAL INTEGRATION; *
* =2: GAUSS-LOBATTO QUADRATURE (COLLOCATION METHOD); *
* =3: GAUSS-LEGENDRE QUADRATURE (SUPERCONVERGENT). *
* IELEM=1 AND ICOL=2 ARE FINITE DIFFERENCE APPROX. *
* ICHX : TYPE OF DISCRETIZATION METHOD. *
* =1: VARIATIONAL COLLOCATION METHOD (PRIMAL FINITE *
* ELEMENTS WITH GAUSS-LOBATTO QUADRATURE); *
* =2: DUAL FINITE ELEMENT APPROXIMATIONS; *
* =3: NODAL COLLOCATION METHOD WITH FULL TENSORIAL *
* PRODUCTS (DUAL FINITE ELEMENTS WITH GAUSS- *
* LOBATTO QUADRATURE). *
* SIDE : SIDE OF THE HEXAGONS. *
* LL4 : ORDER OF THE MATRICES PER GROUP IN TRIVAC. *
* NCODE : TYPES OF BOUNDARY CONDITIONS. DIMENSION=6 *
* ZCODE : ALBEDOS. DIMENSION=6 *
* LX,LY,LZ : NUMBER OF ELEMENTS ALONG THE X, Y AND Z AXIS. *
* XX : X-DIRECTED MESH SPACINGS. DIMENSION=LX*LY*LZ *
* YY : Y-DIRECTED MESH SPACINGS. DIMENSION=LX*LY*LZ *
* ZZ : Z-DIRECTED MESH SPACINGS. DIMENSION=LX*LY*LZ *
* DD : USED WITH CYLINDRICAL GEOMETRIES. DIMENSION=LX*LY*LZ *
* KN : ELEMENT-ORDERED UNKNOWN LIST. DIMENSION LX*LY*LZ*ICO *
* WHERE ICO IS THE NUMBER OF UNKNOWN PER ELEMENT. *
* QFR : ELEMENT-ORDERED BOUNDARY CONDITIONS. *
* DIMENSION 6*LX*LY*LZ OR 8*LX*LZ *
* IQFR : ELEMENT-ORDERED PHYSICAL ALBEDO INDICES. *
* DIMENSION 6*LX*LY*LZ OR 8*LX*LZ *
* MUW : INDICES USED WITH W-DIRECTED COMPRESSED DIAGONAL *
* STORAGE MODE MATRICES. DIMENSION LL4W *
* MUX : INDICES USED WITH X-DIRECTED COMPRESSED DIAGONAL *
* STORAGE MODE MATRICES. DIMENSION LL4X *
* MUY : INDICES USED WITH Y-DIRECTED COMPRESSED DIAGONAL *
* STORAGE MODE MATRICES. DIMENSION LL4Y *
* MUZ : INDICES USED WITH Z-DIRECTED COMPRESSED DIAGONAL *
* STORAGE MODE MATRICES. DIMENSION LL4Z *
* IPW : W-DIRECTED PERMUTATION MATRIX. DIMENSION LL4 *
* IPX : X-DIRECTED PERMUTATION MATRIX. DIMENSION LL4 *
* IPY : Y-DIRECTED PERMUTATION MATRIX. DIMENSION LL4 *
* IPZ : Z-DIRECTED PERMUTATION MATRIX. DIMENSION LL4 *
* *
* SUPERVECTORIAL OPERATION INFORMATION: *
* ISEG : NUMBER OF ELEMENTS IN A VECTOR REGISTER. EQUAL TO *
* ZERO FOR OPERATIONS IN SCALAR MODE. *
* IMPV : PRINT PARAMETER FOR SUPERVECTORIAL OPERATIONS. *
* LTSW : MAXIMUM BANDWIDTH. =2 FOR TRIDIAGONAL SYSTEMS. *
* LONW : NUMBER OF GROUPS OF LINEAR SYSTEMS FOR W-MATRICES. *
* LONX : NUMBER OF GROUPS OF LINEAR SYSTEMS FOR X-MATRICES. *
* LONY : NUMBER OF GROUPS OF LINEAR SYSTEMS FOR Y-MATRICES. *
* LONZ : NUMBER OF GROUPS OF LINEAR SYSTEMS FOR Z-MATRICES. *
* NBLW : NUMBER OF LINEAR SYSTEMS PER W-GROUP. DIMENSION LONW *
* NBLX : NUMBER OF LINEAR SYSTEMS PER X-GROUP. DIMENSION LONX *
* NBLY : NUMBER OF LINEAR SYSTEMS PER Y-GROUP. DIMENSION LONY *
* NBLZ : NUMBER OF LINEAR SYSTEMS PER Z-GROUP. DIMENSION LONZ *
* LBLW : NUMBER OF UNKNOWNS PER W-GROUP. DIMENSION LONW *
* LBLX : NUMBER OF UNKNOWNS PER X-GROUP. DIMENSION LONX *
* LBLY : NUMBER OF UNKNOWNS PER Y-GROUP. DIMENSION LONY *
* LBLZ : NUMBER OF UNKNOWNS PER Z-GROUP. DIMENSION LONZ *
* MUVW : INDICES USED WITH W-DIRECTED COMPRESSED DIAGONAL *
* STORAGE MODE MATRICES IN VECTOR MODE. DIMENSION LL4W *
* MUVX : INDICES USED WITH X-DIRECTED COMPRESSED DIAGONAL *
* STORAGE MODE MATRICES IN VECTOR MODE. DIMENSION LL4X *
* MUVY : INDICES USED WITH Y-DIRECTED COMPRESSED DIAGONAL *
* STORAGE MODE MATRICES IN VECTOR MODE. DIMENSION LL4Y *
* MUVZ : INDICES USED WITH Z-DIRECTED COMPRESSED DIAGONAL *
* STORAGE MODE MATRICES IN VECTOR MODE. DIMENSION LL4Z *
* IPVW : W-DIRECTED VECTOR PERMUTATION MATRIX. DIMENSION LL4 *
* IPVX : X-DIRECTED VECTOR PERMUTATION MATRIX. DIMENSION LL4 *
* IPVY : Y-DIRECTED VECTOR PERMUTATION MATRIX. DIMENSION LL4 *
* IPVZ : Z-DIRECTED VECTOR PERMUTATION MATRIX. DIMENSION LL4 *
* *
* INFORMATION RELATED TO CYLINDRICAL CORRECTIONS IN CARTESIAN GEOMETRY *
* NR0 : NUMBER OF RADII. *
* RR0 : RADII. DIMENSION NR0 *
* XR0 : COORDINATES ON PRINCIPAL AXIS. DIMENSION NR0 *
* ANG : ANGLES FOR APPLYING CIRCULAR CORRECTION. *
* DIMENSION NR0 *
* *
************************************************************************
*
*----
* SCRATCH STORAGE ALLOCATION
*----
ALLOCATE(MAT(MAXPTS),IDL(MAXPTS),VOL(MAXPTS))
*
CALL LCMGET(IPGEOM,'STATE-VECTOR',ISTATE)
ITYPE=ISTATE(1)
*
IF(IMPX.GE.1) WRITE (6,'(/35H TRITRK: DEGREE OF FINITE ELEMENT I,
1 6HELEM =,I3/9X,25HTYPE OF QUADRATURE ICOL =,I3/9X,10HTYPE OF DI,
2 19HSCRETIZATION ICHX =,I3/)') IELEM,ICOL,ICHX
IF((IMPX.GE.1).AND.(ISEG.GT.0)) WRITE (6,'(18H TRITRK: SUPERVECT,
1 27HORIZATION OPTION ON. ISEG =,I4,8H IMPV =,I3/)') ISEG,IMPV
IF(ISTATE(9).EQ.0) THEN
IF((ITYPE.NE.1).AND.(ITYPE.NE.2).AND.(ITYPE.NE.3).AND.
1 (ITYPE.NE.5).AND.(ITYPE.NE.6).AND.(ITYPE.NE.7).AND.
2 (ITYPE.NE.8).AND.(ITYPE.NE.9)) THEN
CALL XABORT('TRITRK: DISCRETIZATION NOT AVAILABLE.')
ENDIF
ALLOCATE(XXX(MAXPTS+1),YYY(MAXPTS+1),ZZZ(MAXPTS+1))
*
ALLOCATE(ISPLX(MAXPTS),ISPLY(MAXPTS),ISPLZ(MAXPTS))
CALL READ3D(MAXPTS,MAXPTS,MAXPTS,MAXPTS,IPGEOM,IHEX,IR,ILK,
1 SIDE,XXX,YYY,ZZZ,IMPX,LX,LY,LZ,MAT,NEL,NCODE,ICODE,ZCODE,
2 ISPLX,ISPLY,ISPLZ,ISPLH,ISPLL)
DEALLOCATE(ISPLX,ISPLY,ISPLZ)
IF((ITYPE.GE.8).AND.(ICHX.EQ.2)) THEN
IF(ISPLL.EQ.0) THEN
CALL XABORT('TRITRK: SPLITL KEYWORD MISSING IN GEOMETRY.')
ENDIF
ISPLH=ISPLL
ELSE IF(ITYPE.GE.8) THEN
ISPLH=ISPLH+1
ENDIF
ELSE
CALL XABORT('TRITRK: DISCRETIZATION NOT AVAILABLE.')
ENDIF
*----
* UNFOLD HEXAGONAL GEOMETRY CASES.
*----
CHEX=(ITYPE.EQ.8).OR.(ITYPE.EQ.9)
IF(CHEX.AND.(IHEX.NE.9)) THEN
ALLOCATE(IDP(MAXPTS),IMX(NEL))
DO 30 I=1,NEL
IMX(I)=MAT(I)
30 CONTINUE
LXOLD=LX
CALL BIVALL(MAXPTS,IHEX,LXOLD,LX,IDP)
DO 41 KZ=1,LZ
DO 40 KX=1,LX
KEL=IDP(KX)+(KZ-1)*LXOLD
MAT(KX+(KZ-1)*LX)=IMX(KEL)
40 CONTINUE
41 CONTINUE
DEALLOCATE(IMX,IDP)
NEL=LX*LZ
ENDIF
*----
* PROCESS INFORMATION RELATED TO CYLINDRICAL CORRECTION IN CARTESIAN
* GEOMETRIES.
*----
CALL LCMLEN(IPGEOM,'RR0',NR0,ITYLCM)
IF(NR0.GT.0) THEN
IF((ITYPE.NE.5).AND.(ITYPE.NE.7)) CALL XABORT('TRITRK: CYLIND'
1 //'RICAL CORRECTIONS ARE LIMITED TO CARTESIAN GEOMETRIES.')
IF(IMPX.GT.0) WRITE(6,'(/33H TRITRK: PERFORM A CYLINDRICAL CO,
2 35HRRECTION ON THE CARTESIAN BOUNDARY.)')
ALLOCATE(RR0(NR0),XR0(NR0),ANG(NR0))
CALL LCMGET(IPGEOM,'RR0',RR0)
CALL LCMGET(IPGEOM,'XR0',XR0)
CALL LCMGET(IPGEOM,'ANG',ANG)
CALL LCMPUT(IPTRK,'RR0',NR0,2,RR0)
CALL LCMPUT(IPTRK,'XR0',NR0,2,XR0)
CALL LCMPUT(IPTRK,'ANG',NR0,2,ANG)
DEALLOCATE(ANG,XR0,RR0)
ENDIF
*
IF(LX*LY*LZ.GT.MAXPTS) THEN
WRITE (HSMG,'(39HTRITRK: MAXPTS SHOULD BE INCREASED FROM,I8,
1 3H TO,I8)') MAXPTS,LX*LY*LZ
CALL XABORT(HSMG)
ENDIF
*----
* 1-D AND 2-D CASES.
*----
IDIM=1
IF((ITYPE.EQ.5).OR.(ITYPE.EQ.6).OR.(ITYPE.EQ.8)) IDIM=2
IF((ITYPE.EQ.7).OR.(ITYPE.EQ.9)) IDIM=3
IF((NCODE(3).EQ.0).AND.(NCODE(4).EQ.0).AND.(.NOT.CHEX)) THEN
IF((IDIM.NE.1).OR.(LY.NE.1)) CALL XABORT('TRITRK: INVALID 1D '
1 //'GEOMETRY.')
NCODE(3)=2
NCODE(4)=5
ZCODE(3)=1.0
ZCODE(4)=1.0
YYY(1)=0.0
YYY(2)=2.0
ENDIF
IF((NCODE(5).EQ.0).AND.(NCODE(6).EQ.0)) THEN
IF((IDIM.EQ.3).OR.(LZ.NE.1)) CALL XABORT('TRITRK: INVALID 1D '
1 //'OR 2D GEOMETRY.')
NCODE(5)=2
NCODE(6)=5
ZCODE(5)=1.0
ZCODE(6)=1.0
ZZZ(1)=0.0
ZZZ(2)=2.0
ENDIF
*----
* 2-D CYLINDRICAL CASES.
*----
CYLIND=(ITYPE.EQ.3).OR.(ITYPE.EQ.6)
IF(ITYPE.EQ.6) THEN
LY=LZ
DO 45 I=1,LZ+1
YYY(I)=ZZZ(I)
45 CONTINUE
NCODE(3)=NCODE(5)
NCODE(4)=NCODE(6)
ICODE(3)=ICODE(5)
ICODE(4)=ICODE(6)
ZCODE(3)=ZCODE(5)
ZCODE(4)=ZCODE(6)
NCODE(5)=0
NCODE(6)=0
ZCODE(5)=0.0
ZCODE(6)=0.0
ENDIF
*----
* UNFOLD THE DOMAIN IN DIAGONAL SYMMETRY CASES.
*----
IDIAG=0
IF((NCODE(2).EQ.3).AND.(NCODE(3).EQ.3)) THEN
IDIAG=1
NCODE(3)=NCODE(1)
NCODE(2)=NCODE(4)
ICODE(3)=ICODE(1)
ICODE(2)=ICODE(4)
ZCODE(3)=ZCODE(1)
ZCODE(2)=ZCODE(4)
K=NEL
DO 82 IZ=LZ,1,-1
IOFF=(IZ-1)*LX*LY
DO 81 IY=LY,1,-1
DO 70 IX=LX,IY+1,-1
MAT(IOFF+(IY-1)*LX+IX)=MAT(IOFF+(IX-1)*LY+IY)
70 CONTINUE
DO 80 IX=IY,1,-1
MAT(IOFF+(IY-1)*LX+IX)=MAT(K)
K=K-1
80 CONTINUE
81 CONTINUE
82 CONTINUE
NEL=LX*LY*LZ
IF(K.NE.0) THEN
CALL XABORT('TRITRK: UNABLE TO UNFOLD THE DOMAIN(1).')
ENDIF
ELSE IF((NCODE(1).EQ.3).AND.(NCODE(4).EQ.3)) THEN
IDIAG=1
NCODE(1)=NCODE(3)
NCODE(4)=NCODE(2)
ICODE(1)=ICODE(3)
ICODE(4)=ICODE(2)
ZCODE(1)=ZCODE(3)
ZCODE(4)=ZCODE(2)
K=NEL
DO 92 IZ=LZ,1,-1
IOFF=(IZ-1)*LX*LY
DO 91 IY=LY,1,-1
DO 90 IX=LX,IY,-1
MAT(IOFF+(IY-1)*LX+IX)=MAT(K)
K=K-1
90 CONTINUE
91 CONTINUE
92 CONTINUE
DO 102 IZ=1,LZ
IOFF=(IZ-1)*LX*LY
DO 101 IY=1,LY
DO 100 IX=1,IY-1
MAT(IOFF+(IY-1)*LX+IX)=MAT(IOFF+(IX-1)*LY+IY)
100 CONTINUE
101 CONTINUE
102 CONTINUE
NEL=LX*LY*LZ
IF(K.NE.0) THEN
CALL XABORT('TRITRK: UNABLE TO UNFOLD THE DOMAIN(2).')
ENDIF
ENDIF
IF(IMPX.GT.5) THEN
WRITE(6,600) 'NCODE',(NCODE(I),I=1,6)
WRITE(6,600) 'MAT',(MAT(I),I=1,LX*LY*LZ)
ENDIF
*
CALL KDRCPU(TK1)
MAXQF=6*NEL
IF(CHEX) MAXQF=8*NEL
IF((ICHX.EQ.1).AND.(.NOT.CHEX)) THEN
MAXKN=NEL*(IELEM+1)**3
ELSE IF((ICHX.EQ.2).AND.(.NOT.CHEX)) THEN
MAXKN=NEL*(1+6*IELEM**2)
ELSE IF((ICHX.EQ.3).AND.(.NOT.CHEX)) THEN
MAXKN=6*NEL
ELSE IF((ICHX.EQ.1).AND.CHEX) THEN
IF(ISPLH.EQ.1) THEN
MAXKN=12*NEL
ELSE
MAXKN=2*(1+ISPLH*(ISPLH-1)*3)*NEL
ENDIF
ELSE IF((ICHX.EQ.2).AND.CHEX) THEN
MAXKN=(NEL*ISPLH**2)*(3+6*IELEM*IELEM*(IELEM+2))
MAXQF=(NEL*ISPLH**2)*8
ELSE IF((ICHX.EQ.3).AND.CHEX) THEN
IF(ISPLH.EQ.1) THEN
MAXKN=8*NEL
ELSE
MAXKN=(18*(ISPLH-1)**2+8)*NEL
ENDIF
ELSE
CALL XABORT('TRITRK: INVALID TYPE OF DISCRETIZATION.')
ENDIF
IF(CYLIND) THEN
MAXDD=NEL
ELSE
MAXDD=1
ENDIF
IF((ICHX.NE.2).AND.CHEX.AND.(IELEM.NE.1)) CALL XABORT('TRITRK: T'
1 //'HIS HEXAGONAL DISCRETIZATIONS IS LIMITED TO LINEAR ORDER.')
IF(CHEX.AND.(NCODE(1).EQ.5)) CALL XABORT('TRITRK: SYME BOUNDARY '
1 //'CONDITION IS NOT AVAILABLE AROUND THE HEXAGONAL PLANE.')
ALLOCATE(XX(NEL),YY(NEL),ZZ(NEL),DD(MAXDD),KN(MAXKN),QFR(MAXQF),
1 IQFR(MAXQF))
KN(:MAXKN)=0
QFR(:MAXQF)=0.0
IQFR(:MAXQF)=0
LL4=0
IF((ICHX.EQ.1).AND.(.NOT.CHEX)) THEN
CALL TRIPKN(IELEM,LX,LY,LZ,LL4,CYLIND,XXX,YYY,ZZZ,XX,YY,ZZ,DD,
1 KN,QFR,IQFR,VOL,MAT,NCODE,ICODE,ZCODE,IMPX)
IF((IMPX.GT.0).AND.(IELEM.EQ.1)) THEN
WRITE (6,'(/40H TRITRK: MESH CORNER FINITE DIFFERENCES.)')
ENDIF
LL4W=0
LL4X=LL4
LL4Y=LL4
LL4Z=LL4
ELSE IF((ICHX.EQ.2).AND.(.NOT.CHEX)) THEN
CALL TRIDKN(IMPX,LX,LY,LZ,CYLIND,IELEM,LL4,LL4F,LL4X,LL4Y,
1 LL4Z,NCODE,ICODE,ZCODE,MAT,VOL,XXX,YYY,ZZZ,XX,YY,ZZ,DD,KN,
2 QFR,IQFR,IDL)
MAXIP=LX*LY*LZ
NUN=LL4
ELSE IF((ICHX.EQ.3).AND.(.NOT.CHEX)) THEN
MAXIP=LX*LY*LZ
CALL TRIDFC(IMPX,LX,LY,LZ,CYLIND,NCODE,ICODE,ZCODE,MAT,XXX,
1 YYY,ZZZ,LL0,VOL,XX,YY,ZZ,DD,KN,QFR,IQFR)
IF(IELEM.EQ.1) THEN
LL4=LL0
IF(IMPX.GT.0) WRITE (6,'(/29H TRITRK: MESH CENTERED FINITE,
1 13H DIFFERENCES.)')
ELSE IF((IELEM.GT.1).AND.(ICHX.EQ.3)) THEN
LL4=LL0*IELEM**IDIM
IF(IMPX.GT.0) WRITE (6,'(/29H TRITRK: NODAL COLLOCATION ME,
1 13HTHOD OF ORDER,I3,1H.)') IELEM
ENDIF
* COMPUTE INDICES IDL.
IF(ICHX.EQ.3) THEN
* NODAL COLLOCATION METHOD.
NUN=0
DO 110 K=1,NEL
IDL(K)=0
IF(MAT(K).EQ.0) GO TO 110
NUN=NUN+1
IDL(K)=1+IELEM*(NUN-1)
110 CONTINUE
NUN=LL4
ENDIF
LL4W=0
LL4X=LL4
LL4Y=LL4
LL4Z=LL4
ELSE IF((ICHX.EQ.1).AND.CHEX) THEN
MAXIP=1
IF(IELEM.NE.1) CALL XABORT('TRITRK: INVALID DISCRETIZATION.')
CALL TRIPRH(ISPLH,IPTRK,LX,LZ,LL4,SIDE,ZZZ,ZZ,KN,QFR,IQFR,VOL,
1 MAT,NCODE,ICODE,ZCODE,IMPX)
IF(IMPX.GT.0) WRITE (6,'(/32H TRITRK: MESH CORNER FINITE DIFF,
1 39HERENCES FOR HEXAGONAL GEOMETRY. ISPLH =,I3,1H.)') ISPLH
LL4W=LL4
LL4X=LL4
LL4Y=LL4
LL4Z=LL4
ELSE IF((ICHX.EQ.2).AND.CHEX) THEN
NEL=LX*LZ
LXH=LX/(3*ISPLH**2)
NBLOS=LXH*LZ*ISPLH**2
NBC=INT((SQRT(REAL((4*LXH-1)/3))+1.)/2.)
MAXIP=3*(2*LXH*ISPLH*IELEM+2*NBC-1)*ISPLH*LZ*IELEM**2
1 +3*LXH*(LZ+1)*(ISPLH**2)*IELEM**2
ALLOCATE(IPERT(NBLOS),FRZ(NBLOS))
CALL TRISFH(IMPX,MAXKN,MAXIP,NBLOS,ISPLH,IELEM,LXH,LZ,MAT,SIDE,
1 ZZZ,NCODE,ICODE,ZCODE,LL4,LL4F,LL4W,LL4X,LL4Y,LL4Z,VOL,IDL,
2 IPERT,ZZ,FRZ,KN,QFR,IQFR)
CALL LCMPUT(IPTRK,'IPERT',NBLOS,1,IPERT)
CALL LCMPUT(IPTRK,'FRZ',NBLOS,2,FRZ)
DEALLOCATE(FRZ,IPERT)
NUN=LL4
IF(IMPX.GT.0) WRITE (6,'(/32H TRITRK: THOMAS-RAVIART-SCHNEIDE,
1 49HR FINITE ELEMENTS FOR HEXAGONAL GEOMETRY. ISPLH =,I3,1H.)')
2 ISPLH
ELSE IF((ICHX.EQ.3).AND.CHEX) THEN
MAXIP=LX*LZ
IF(IELEM.NE.1) CALL XABORT('TRITRK: INVALID DISCRETIZATION.')
CALL TRIDFH(ISPLH,IPTRK,IDIM,LX,LZ,LL4,NUN,SIDE,ZZZ,ZZ,KN,QFR,
1 IQFR,VOL,MAT,IDL,NCODE,ICODE,ZCODE,IMPX)
IF(IMPX.GT.0) WRITE (6,'(/32H TRITRK: MESH CENTERED FINITE DI,
1 41HFFERENCES FOR HEXAGONAL GEOMETRY. ISPLH =,I3,1H.)') ISPLH
LL4W=LL4
LL4X=LL4
LL4Y=LL4
LL4Z=LL4
ENDIF
*----
* APPEND THE PN FLUXES AT THE END OF UNKNOWN VECTOR.
*----
IF(NLF.GE.2) THEN
IF((ITYPE.EQ.2).OR.((ITYPE.EQ.5).AND.(ISPN.EQ.1)).OR.
1 ((ITYPE.EQ.7).AND.(ISPN.EQ.1))) THEN
NUN=LL4+LL4*(NLF-2)/2
ELSE IF((ITYPE.EQ.8).AND.(ISPN.EQ.1)) THEN
NUN=NUN+NUN*(NLF-2)/2
ELSE IF((ITYPE.EQ.9).AND.(ISPN.EQ.1)) THEN
NUN=NUN+NUN*(NLF-2)/2
ELSE
CALL XABORT('TRITRK: GEOMETRY NOT SUPPORTED WITH PN.')
ENDIF
ENDIF
*----
* COMPUTE INDICES IDL FOR PRIMAL FINITE ELEMENTS.
*----
IF(ICHX.EQ.1) THEN
NUN=LL4
DO 130 K=1,NEL
IF(MAT(K).EQ.0) THEN
IDL(K)=0
ELSE
NUN=NUN+1
IDL(K)=NUN
ENDIF
130 CONTINUE
ENDIF
*
IF(IMPX.GT.0) WRITE (6,'(/34H TRITRK: ORDER OF LINEAR SYSTEMS =,
1 I8/9X,37HNUMBER OF UNKNOWNS PER ENERGY GROUP =,I8)') LL4,NUN
DEALLOCATE(ZZZ,YYY,XXX)
CALL KDRCPU(TK2)
IF(IMPX.GE.2) WRITE(6,'(/37H TRITRK: CPU TIME FOR FINITE ELEMENT ,
1 11HNUMBERING =,F7.2,2H S)') TK2-TK1
*----
* COMPUTE INDICES MUW, MUX, MUY, MUZ, IPW, IPX, IPY AND IPZ.
*----
CALL KDRCPU(TK1)
IF(CHEX) ALLOCATE(MUW(LL4))
ALLOCATE(MUX(LL4),MUY(LL4),MUZ(LL4))
IF(CHEX) ALLOCATE(IPW(LL4))
IF(ICHX.NE.2) THEN
ALLOCATE(IPX(LL4),IPY(LL4),IPZ(LL4))
DO 140 I=1,LL4
IPX(I)=I
140 CONTINUE
ENDIF
*
IF((ICHX.EQ.1).AND.(.NOT.CHEX)) THEN
CALL BIVCOL(IPTRK,IMPX,IELEM,2)
CALL TRICHP(IELEM,LX,LY,LZ,LL4,MAT,KN,MUX,MUY,MUZ,IPY,IPZ,IMPX)
ELSE IF((ICHX.EQ.2).AND.(.NOT.CHEX)) THEN
LL4W=0
CALL BIVCOL(IPTRK,IMPX,IELEM,ICOL)
CALL LCMSIX(IPTRK,'BIVCOL',1)
ALLOCATE(V((IELEM+1),IELEM))
CALL LCMGET(IPTRK,'V',V)
CALL LCMSIX(IPTRK,' ',2)
ALLOCATE(IPBBX(2*IELEM*LL4X),IPBBY(2*IELEM*LL4Y),
1 IPBBZ(2*IELEM*LL4Z))
ALLOCATE(BBX(2*IELEM*LL4X),BBY(2*IELEM*LL4Y),BBZ(2*IELEM*LL4Z))
CALL TRICHD(IMPX,LX,LY,LZ,CYLIND,IELEM,LL4,LL4F,LL4X,LL4Y,LL4Z,
1 MAT,VOL,XX,YY,ZZ,DD,KN,V,MUX,MUY,MUZ,IPBBX,IPBBY,IPBBZ,BBX,BBY,
2 BBZ)
IF(LL4X.GT.0) THEN
CALL LCMPUT(IPTRK,'IPBBX',2*IELEM*LL4X,1,IPBBX)
CALL LCMPUT(IPTRK,'XB',2*IELEM*LL4X,2,BBX)
ENDIF
IF(LL4Y.GT.0) THEN
CALL LCMPUT(IPTRK,'IPBBY',2*IELEM*LL4Y,1,IPBBY)
CALL LCMPUT(IPTRK,'YB',2*IELEM*LL4Y,2,BBY)
ENDIF
IF(LL4Z.GT.0) THEN
CALL LCMPUT(IPTRK,'IPBBZ',2*IELEM*LL4Z,1,IPBBZ)
CALL LCMPUT(IPTRK,'ZB',2*IELEM*LL4Z,2,BBZ)
ENDIF
DEALLOCATE(BBZ,BBY,BBX,IPBBZ,IPBBY,IPBBX)
DEALLOCATE(V)
ELSE IF((ICHX.EQ.3).AND.(.NOT.CHEX)) THEN
CALL TRICH1(IELEM,IDIM,LX,LY,LZ,LL4,MAT,KN,MUX,MUY,MUZ,IPY,
1 IPZ,IMPX)
ELSE IF((ICHX.EQ.1).AND.CHEX) THEN
CALL BIVCOL(IPTRK,IMPX,IELEM,2)
CALL TRICH3(ISPLH,IPTRK,LX,LZ,LL4,MAT,KN,MUW,MUX,MUY,MUZ,IPW,
1 IPX,IPY,IPZ,IMPX)
ELSE IF((ICHX.EQ.2).AND.CHEX) THEN
LXH=LX/(3*ISPLH**2)
NBLOS=LXH*LZ*ISPLH**2
ALLOCATE(IPERT(NBLOS),FRZ(NBLOS))
CALL LCMGET(IPTRK,'IPERT',IPERT)
CALL LCMGET(IPTRK,'FRZ',FRZ)
CALL BIVCOL(IPTRK,IMPX,IELEM,ICOL)
CALL LCMSIX(IPTRK,'BIVCOL',1)
ALLOCATE(V((IELEM+1),IELEM),H((IELEM+1),IELEM))
CALL LCMGET(IPTRK,'V',V)
CALL LCMGET(IPTRK,'H',H)
CALL LCMSIX(IPTRK,' ',2)
ALLOCATE(IPBBW(2*IELEM*LL4W),IPBBX(2*IELEM*LL4X),
1 IPBBY(2*IELEM*LL4Y),IPBBZ(2*IELEM*LL4Z))
ALLOCATE(BBW(2*IELEM*LL4W),BBX(2*IELEM*LL4X),
1 BBY(2*IELEM*LL4Y),BBZ(2*IELEM*LL4Z))
ALLOCATE(CTRAN(((IELEM+1)*IELEM)**2))
CALL TRICHH(IMPX,MAXKN,NBLOS,LXH,LZ,IELEM,ISPLH,LL4,LL4F,LL4W,
1 LL4X,LL4Y,LL4Z,SIDE,ZZ,FRZ,IPERT,KN,V,H,MUW,MUX,MUY,MUZ,IPBBW,
2 IPBBX,IPBBY,IPBBZ,BBW,BBX,BBY,BBZ,CTRAN)
CALL LCMPUT(IPTRK,'CTRAN',((IELEM+1)*IELEM)**2,4,CTRAN)
CALL LCMPUT(IPTRK,'IPBBW',2*IELEM*LL4W,1,IPBBW)
CALL LCMPUT(IPTRK,'WB',2*IELEM*LL4W,2,BBW)
CALL LCMPUT(IPTRK,'IPBBX',2*IELEM*LL4X,1,IPBBX)
CALL LCMPUT(IPTRK,'XB',2*IELEM*LL4X,2,BBX)
CALL LCMPUT(IPTRK,'IPBBY',2*IELEM*LL4Y,1,IPBBY)
CALL LCMPUT(IPTRK,'YB',2*IELEM*LL4Y,2,BBY)
IF(LL4Z.GT.0) THEN
CALL LCMPUT(IPTRK,'IPBBZ',2*IELEM*LL4Z,1,IPBBZ)
CALL LCMPUT(IPTRK,'ZB',2*IELEM*LL4Z,2,BBZ)
ENDIF
DEALLOCATE(BBZ,BBY,BBX,BBW,IPBBZ,IPBBY,IPBBX,IPBBW)
DEALLOCATE(H,V,CTRAN,FRZ,IPERT)
ELSE IF((ICHX.EQ.3).AND.CHEX) THEN
CALL TRICH4(ISPLH,IPTRK,IDIM,LX,LZ,LL4,MAT,KN,MUW,MUX,MUY,MUZ,
1 IPW,IPX,IPY,IPZ,IMPX)
ENDIF
CALL KDRCPU(TK2)
IF(IMPX.GE.2) WRITE(6,'(/36H TRITRK: CPU TIME FOR ADI SPLITTING ,
1 11HNUMBERING =,F7.2,2H S)') TK2-TK1
IF(IMPX.GT.5) THEN
I1=1
DO 150 I=1,(NEL-1)/8+1
I2=I1+7
IF(I2.GT.NEL) I2=NEL
WRITE (6,620) (J,J=I1,I2)
WRITE (6,630) (MAT(J),J=I1,I2)
WRITE (6,640) (IDL(J),J=I1,I2)
WRITE (6,650) (VOL(J),J=I1,I2)
I1=I1+8
150 CONTINUE
ENDIF
*----
* SUPERVECTORIZATION CONTROL.
*----
LTSW=0
IF(ISEG.GT.0) THEN
CALL KDRCPU(TK1)
ALLOCATE(ISET(LL4))
IF(CHEX) THEN
ISET(1)=0
K1=MUW(1)+1
DO 160 I=2,LL4W
ISET(I)=0
K2=MUW(I)
DO 155 J=I-K2+K1,I-1
ISET(J)=1
155 CONTINUE
K1=K2+1
160 CONTINUE
NSYS=0
DO 165 I=1,LL4W
IF(ISET(I).EQ.0) NSYS=NSYS+1
165 CONTINUE
LONW=1+(NSYS-1)/ISEG
ALLOCATE(NBLW(LONW),LBLW(LONW),MUVW(LONW),IPVW(LONW))
CALL VECPER('W',IMPV,ISEG,LL4W,MUW,LONW,LTSW2,NBLW,LBLW,
1 MUVW,IPVW)
IMU=0
DO 166 I=1,LONW
IMU=IMU+LBLW(I)
166 CONTINUE
LTSW=MAX(LTSW,LTSW2)
CALL LCMPUT(IPTRK,'NBLW',LONW,1,NBLW)
CALL LCMPUT(IPTRK,'LBLW',LONW,1,LBLW)
CALL LCMPUT(IPTRK,'MUVW',IMU,1,MUVW)
CALL LCMPUT(IPTRK,'IPVW',LL4W,1,IPVW)
DEALLOCATE(IPVW,MUVW,LBLW,NBLW)
IMU=IMU*ISEG
CALL LCMPUT(IPTRK,'LL4VW',1,1,IMU)
ENDIF
IF(IDIAG.EQ.0) THEN
ISET(1)=0
K1=MUX(1)+1
DO 175 I=2,LL4X
ISET(I)=0
K2=MUX(I)
DO 170 J=I-K2+K1,I-1
ISET(J)=1
170 CONTINUE
K1=K2+1
175 CONTINUE
NSYS=0
DO 180 I=1,LL4X
IF(ISET(I).EQ.0) NSYS=NSYS+1
180 CONTINUE
LONX=1+(NSYS-1)/ISEG
ALLOCATE(NBLX(LONX),LBLX(LONX),MUVX(LONX),IPVX(LONX))
CALL VECPER('X',IMPV,ISEG,LL4X,MUX,LONX,LTSW2,NBLX,LBLX,
1 MUVX,IPVX)
IMU=0
DO 185 I=1,LONX
IMU=IMU+LBLX(I)
185 CONTINUE
LTSW=MAX(LTSW,LTSW2)
CALL LCMPUT(IPTRK,'NBLX',LONX,1,NBLX)
CALL LCMPUT(IPTRK,'LBLX',LONX,1,LBLX)
CALL LCMPUT(IPTRK,'MUVX',IMU,1,MUVX)
CALL LCMPUT(IPTRK,'IPVX',LL4X,1,IPVX)
DEALLOCATE(IPVX,MUVX,LBLX,NBLX)
IMU=IMU*ISEG
CALL LCMPUT(IPTRK,'LL4VX',1,1,IMU)
ENDIF
IF(IDIM.GE.2) THEN
ISET(1)=0
K1=MUY(1)+1
DO 200 I=2,LL4Y
ISET(I)=0
K2=MUY(I)
DO 190 J=I-K2+K1,I-1
ISET(J)=1
190 CONTINUE
K1=K2+1
200 CONTINUE
NSYS=0
DO 210 I=1,LL4Y
IF(ISET(I).EQ.0) NSYS=NSYS+1
210 CONTINUE
LONY=1+(NSYS-1)/ISEG
ALLOCATE(NBLY(LONY),LBLY(LONY),MUVY(LONY),IPVY(LONY))
CALL VECPER('Y',IMPV,ISEG,LL4Y,MUY,LONY,LTSW2,NBLY,LBLY,
1 MUVY,IPVY)
IMU=0
DO 215 I=1,LONY
IMU=IMU+LBLY(I)
215 CONTINUE
LTSW=MAX(LTSW,LTSW2)
CALL LCMPUT(IPTRK,'NBLY',LONY,1,NBLY)
CALL LCMPUT(IPTRK,'LBLY',LONY,1,LBLY)
CALL LCMPUT(IPTRK,'MUVY',IMU,1,MUVY)
CALL LCMPUT(IPTRK,'IPVY',LL4Y,1,IPVY)
DEALLOCATE(IPVY,MUVY,LBLY,NBLY)
IMU=IMU*ISEG
CALL LCMPUT(IPTRK,'LL4VY',1,1,IMU)
ENDIF
IF(IDIM.EQ.3) THEN
ISET(1)=0
K1=MUZ(1)+1
DO 230 I=2,LL4Z
ISET(I)=0
K2=MUZ(I)
DO 220 J=I-K2+K1,I-1
ISET(J)=1
220 CONTINUE
K1=K2+1
230 CONTINUE
NSYS=0
DO 240 I=1,LL4Z
IF(ISET(I).EQ.0) NSYS=NSYS+1
240 CONTINUE
LONZ=1+(NSYS-1)/ISEG
ALLOCATE(NBLZ(LONZ),LBLZ(LONZ),MUVZ(LONZ),IPVZ(LONZ))
CALL VECPER('Z',IMPV,ISEG,LL4Z,MUZ,LONZ,LTSW2,NBLZ,LBLZ,
1 MUVZ,IPVZ)
IMU=0
DO 250 I=1,LONZ
IMU=IMU+LBLZ(I)
250 CONTINUE
LTSW=MAX(LTSW,LTSW2)
CALL LCMPUT(IPTRK,'NBLZ',LONZ,1,NBLZ)
CALL LCMPUT(IPTRK,'LBLZ',LONZ,1,LBLZ)
CALL LCMPUT(IPTRK,'MUVZ',IMU,1,MUVZ)
CALL LCMPUT(IPTRK,'IPVZ',LL4Z,1,IPVZ)
DEALLOCATE(IPVZ,MUVZ,LBLZ,NBLZ)
IMU=IMU*ISEG
CALL LCMPUT(IPTRK,'LL4VZ',1,1,IMU)
ENDIF
DEALLOCATE(ISET)
CALL KDRCPU(TK2)
IF(IMPX.GE.2) WRITE(6,'(/33H TRITRK: CPU TIME FOR SUPERVECTOR,
1 19HIZATION NUMBERING =,F7.2,2H S)') TK2-TK1
ENDIF
*----
* SAVE STATE-VECTOR AND TRACKING INFORMATION.
*----
IGP(:NSTATE)=0
IGP(1)=NEL
IGP(2)=NUN
IF(ILK) THEN
IGP(3)=0
ELSE
IGP(3)=1
ENDIF
IGP(4)=ISTATE(7)
IGP(5)=0
IGP(6)=ITYPE
IGP(7)=IHEX
IGP(8)=IDIAG
IGP(9)=IELEM
IGP(10)=ICOL
IGP(11)=LL4
IGP(12)=ICHX
IGP(13)=ISPLH
IGP(14)=LX
IGP(15)=LY
IGP(16)=LZ
IGP(17)=ISEG
IF(ISEG.NE.0) THEN
IGP(18)=IMPV
IGP(19)=LTSW
IGP(20)=LONW
IGP(21)=LONX
IGP(22)=LONY
IGP(23)=LONZ
ENDIF
IGP(24)=NR0
IF(ICHX.EQ.2) THEN
IGP(25)=LL4F
IGP(26)=LL4W
IGP(27)=LL4X
IGP(28)=LL4Y
IGP(29)=LL4Z
ENDIF
IGP(30)=NLF
IGP(31)=ISPN
IGP(32)=ISCAT
IGP(33)=NADI
IGP(34)=NVD
CALL LCMPUT(IPTRK,'STATE-VECTOR',NSTATE,1,IGP)
CALL LCMPUT(IPTRK,'MATCOD',NEL,1,MAT)
CALL LCMPUT(IPTRK,'VOLUME',NEL,2,VOL)
CALL LCMPUT(IPTRK,'KEYFLX',NEL,1,IDL)
CALL LCMPUT(IPTRK,'NCODE',6,1,NCODE)
CALL LCMPUT(IPTRK,'ZCODE',6,2,ZCODE)
CALL LCMPUT(IPTRK,'ICODE',6,1,ICODE)
CALL LCMPUT(IPTRK,'ZZ',NEL,2,ZZ)
CALL LCMPUT(IPTRK,'KN',MAXKN,1,KN)
CALL LCMPUT(IPTRK,'QFR',MAXQF,2,QFR)
CALL LCMPUT(IPTRK,'IQFR',MAXQF,1,IQFR)
IF(ICHX.NE.2) THEN
CALL LCMPUT(IPTRK,'IPX',LL4,1,IPX)
DEALLOCATE(IPX)
ENDIF
IF(CHEX) THEN
CALL LCMPUT(IPTRK,'SIDE',1,2,SIDE)
CALL LCMPUT(IPTRK,'MUW',LL4W,1,MUW)
IF(ICHX.NE.2) THEN
CALL LCMPUT(IPTRK,'IPW',LL4,1,IPW)
DEALLOCATE(IPW)
ENDIF
DEALLOCATE(MUW)
ELSE
CALL LCMPUT(IPTRK,'XX',NEL,2,XX)
CALL LCMPUT(IPTRK,'YY',NEL,2,YY)
IF(.NOT.CYLIND) DD=0.0
CALL LCMPUT(IPTRK,'DD',MAXDD,2,DD)
ENDIF
DEALLOCATE(XX,YY,ZZ,DD,KN,QFR,IQFR)
IF((IDIAG.EQ.0).AND.(LL4X.GT.0)) THEN
CALL LCMPUT(IPTRK,'MUX',LL4X,1,MUX)
ENDIF
IF((IDIM.GE.2).AND.(LL4Y.GT.0)) THEN
CALL LCMPUT(IPTRK,'MUY',LL4Y,1,MUY)
IF(ICHX.NE.2) THEN
CALL LCMPUT(IPTRK,'IPY',LL4,1,IPY)
DEALLOCATE(IPY)
ENDIF
ELSE
IF(ICHX.NE.2) DEALLOCATE(IPY)
ENDIF
IF((IDIM.EQ.3).AND.(LL4Z.GT.0)) THEN
CALL LCMPUT(IPTRK,'MUZ',LL4Z,1,MUZ)
IF(ICHX.NE.2) THEN
CALL LCMPUT(IPTRK,'IPZ',LL4,1,IPZ)
DEALLOCATE(IPZ)
ENDIF
ELSE
IF(ICHX.NE.2) DEALLOCATE(IPZ)
ENDIF
DEALLOCATE(MUZ,MUY,MUX)
*----
* SCRATCH STORAGE DEALLOCATION
*----
DEALLOCATE(MAT,IDL,VOL)
RETURN
*
600 FORMAT(/26H TRITRK: VALUES OF VECTOR ,A6,4H ARE/(1X,1P,20I6))
620 FORMAT (///11H REGION ,8(I8,6X,1HI))
630 FORMAT ( 11H MIXTURE ,8(I8,6X,1HI))
640 FORMAT ( 11H POINTER ,8(I8,6X,1HI))
650 FORMAT ( 11H VOLUME ,8(1P,E13.6,2H I))
END
|