summaryrefslogtreecommitdiff
path: root/Trivac/src/TRITRK.f
blob: 42cfd2e9a5e05cc36e145ceee06c12c1a336b2b4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
*DECK TRITRK
      SUBROUTINE TRITRK (MAXPTS,IPTRK,IPGEOM,IMPX,IELEM,ICOL,ICHX,ISEG,
     1 IMPV,NLF,NVD,ISPN,ISCAT,NADI)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Recover of the geometry and tracking for TRIVAC.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* MAXPTS  allocated storage for arrays of dimension NEL.
* IPTRK   L_TRACK pointer to the TRIVAC tracking information.
* IPGEOM  L_GEOM pointer to the geometry.
* IMPX    print flag.
* IELEM   degree of the Lagrangian finite elements:
*         =1: linear finite elements or finite differences;
*         =2: parabolic finite elements;
*         =3: cubic finite elements;
*         =4: quartic finite elements.
* ICOL    type of quadrature used to integrate the mass matrix:
*         =1: analytical integration;
*         =2: Gauss-Lobatto quadrature (collocation method);
*         =3: Gauss-Legendre quadrature (superconvergent)
*         IELEM=1 and ICOL=2 are finite difference approximations.
* ICHX    type of discretization method:
*         =1: variational collocation method (primal finite elements
*             with Gauss-Lobatto quadrature);
*         =2: dual finite element approximations;
*         =3: nodal collocation method with full tensorial products
*            (dual finite elements with Gauss-Lobatto quadrature).
* ISEG    number of elements in a vector register. Equal to zero for
*         operations in scalar mode.
* IMPV    print parameter for supervectorial operations.
* NLF     number of Legendre orders for the flux. Equal to zero for
*         diffusion theory.
* NVD     type of void boundary condition if NLF>0 and ICOL=3.
* ISPN    type of transport solution:
*         =0: complete PN method;
*         =1: simplified PN method.
* ISCAT   source anisotropy:
*         =1: isotropic sources in laboratory system;
*         =2: linearly anisotropic sources in laboratory system.
* NADI    number of ADI iterations at the inner iterative level.
*
*-----------------------------------------------------------------------
*
      USE GANLIB
*----
*  SUBROUTINE ARGUMENTS
*----
      TYPE(C_PTR) IPTRK,IPGEOM
      INTEGER MAXPTS,IMPX,IELEM,ICOL,ICHX,ISEG,IMPV,NLF,NVD,ISPN,ISCAT,
     1 NADI
*----
*  LOCAL VARIABLES
*----
      PARAMETER (NSTATE=40)
      LOGICAL ILK,CYLIND,CHEX
      CHARACTER HSMG*131
      INTEGER ISTATE(NSTATE),IGP(NSTATE),NCODE(6),ICODE(6)
      REAL ZCODE(6)
      INTEGER, DIMENSION(:), ALLOCATABLE :: MAT,IDL,IPERT,KN,IQFR,IDP,
     1 IMX,ISPLX,ISPLY,ISPLZ,MUW,MUX,MUY,MUZ,IPW,IPX,IPY,IPZ,ISET
      REAL, DIMENSION(:), ALLOCATABLE :: VOL,XXX,YYY,ZZZ,XX,YY,ZZ,DD,
     1 QFR,FRZ,RR0,XR0,ANG
      REAL, DIMENSION(:,:), ALLOCATABLE :: V,H
      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: CTRAN
      INTEGER, DIMENSION(:), ALLOCATABLE :: NBLW,LBLW,MUVW,IPVW,NBLX,
     1 LBLX,MUVX,IPVX,NBLY,LBLY,MUVY,IPVY,NBLZ,LBLZ,MUVZ,IPVZ
      REAL, DIMENSION(:), ALLOCATABLE :: BBW,BBX,BBY,BBZ
      INTEGER, DIMENSION(:), ALLOCATABLE :: IPBBW,IPBBX,IPBBY,IPBBZ
*
******************* TRIVAC GEOMETRICAL STRUCTURE. **********************
*                                                                      *
*   ITYPE       : =2 : CARTESIAN 1-D GEOMETRY;                         *
*                 =3 : TUBE 1-D GEOMETRY;                              *
*                 =5 : CARTESIAN 2-D GEOMETRY;                         *
*                 =6 : TUBE 2-D GEOMETRY;                              *
*                 =7 : CARTESIAN 3-D GEOMETRY;                         *
*                 =8 : HEXAGONAL 2-D GEOMETRY;                         *
*                 =9 : HEXAGONAL 3-D GEOMETRY.                         *
*   IHEX        : TYPE OF HEXAGONAL SYMMETRY.                          *
*   IDIAG       : =0 NO DIAGONAL SYMMETRY; =1 DIAGONAL SYMMETRY.       *
*   IELEM       : DEGREE OF THE LAGRANGIAN FINITE ELEMENTS.            *
*                 =1: LINEAR FINITE ELEMENTS OR FINITE DIFFERENCES;    *
*                 =2: PARABOLIC FINITE ELEMENTS;                       *
*                 =3: CUBIC FINITE ELEMENTS;                           *
*                 =4: QUARTIC FINITE ELEMENTS.                         *
*   ICOL        : TYPE OF QUADRATURE USED TO INTEGRATE THE MASS MATRIX.*
*                 =1: ANALYTICAL INTEGRATION;                          *
*                 =2: GAUSS-LOBATTO QUADRATURE (COLLOCATION METHOD);   *
*                 =3: GAUSS-LEGENDRE QUADRATURE (SUPERCONVERGENT).     *
*                 IELEM=1 AND ICOL=2 ARE FINITE DIFFERENCE APPROX.     *
*   ICHX        : TYPE OF DISCRETIZATION METHOD.                       *
*                 =1: VARIATIONAL COLLOCATION METHOD (PRIMAL FINITE    *
*                     ELEMENTS WITH GAUSS-LOBATTO QUADRATURE);         *
*                 =2: DUAL FINITE ELEMENT APPROXIMATIONS;              *
*                 =3: NODAL COLLOCATION METHOD WITH FULL TENSORIAL     *
*                     PRODUCTS (DUAL FINITE ELEMENTS WITH GAUSS-       *
*                     LOBATTO QUADRATURE).                             *
*   SIDE        : SIDE OF THE HEXAGONS.                                *
*   LL4         : ORDER OF THE MATRICES PER GROUP IN TRIVAC.           *
*   NCODE       : TYPES OF BOUNDARY CONDITIONS. DIMENSION=6            *
*   ZCODE       : ALBEDOS. DIMENSION=6                                 *
*   LX,LY,LZ    : NUMBER OF ELEMENTS ALONG THE X, Y AND Z AXIS.        *
*   XX          : X-DIRECTED MESH SPACINGS. DIMENSION=LX*LY*LZ         *
*   YY          : Y-DIRECTED MESH SPACINGS. DIMENSION=LX*LY*LZ         *
*   ZZ          : Z-DIRECTED MESH SPACINGS. DIMENSION=LX*LY*LZ         *
*   DD          : USED WITH CYLINDRICAL GEOMETRIES. DIMENSION=LX*LY*LZ *
*   KN          : ELEMENT-ORDERED UNKNOWN LIST. DIMENSION LX*LY*LZ*ICO *
*                 WHERE ICO IS THE NUMBER OF UNKNOWN PER ELEMENT.      *
*   QFR         : ELEMENT-ORDERED BOUNDARY CONDITIONS.                 *
*                 DIMENSION 6*LX*LY*LZ OR 8*LX*LZ                      *
*   IQFR        : ELEMENT-ORDERED PHYSICAL ALBEDO INDICES.             *
*                 DIMENSION 6*LX*LY*LZ OR 8*LX*LZ                      *
*   MUW         : INDICES USED WITH W-DIRECTED COMPRESSED DIAGONAL     *
*                 STORAGE MODE MATRICES. DIMENSION LL4W                *
*   MUX         : INDICES USED WITH X-DIRECTED COMPRESSED DIAGONAL     *
*                 STORAGE MODE MATRICES. DIMENSION LL4X                *
*   MUY         : INDICES USED WITH Y-DIRECTED COMPRESSED DIAGONAL     *
*                 STORAGE MODE MATRICES. DIMENSION LL4Y                *
*   MUZ         : INDICES USED WITH Z-DIRECTED COMPRESSED DIAGONAL     *
*                 STORAGE MODE MATRICES. DIMENSION LL4Z                *
*   IPW         : W-DIRECTED PERMUTATION MATRIX. DIMENSION LL4         *
*   IPX         : X-DIRECTED PERMUTATION MATRIX. DIMENSION LL4         *
*   IPY         : Y-DIRECTED PERMUTATION MATRIX. DIMENSION LL4         *
*   IPZ         : Z-DIRECTED PERMUTATION MATRIX. DIMENSION LL4         *
*                                                                      *
* SUPERVECTORIAL OPERATION INFORMATION:                                *
*   ISEG        : NUMBER OF ELEMENTS IN A VECTOR REGISTER. EQUAL TO    *
*                 ZERO FOR OPERATIONS IN SCALAR MODE.                  *
*   IMPV        : PRINT PARAMETER FOR SUPERVECTORIAL OPERATIONS.       *
*   LTSW        : MAXIMUM BANDWIDTH. =2 FOR TRIDIAGONAL SYSTEMS.       *
*   LONW        : NUMBER OF GROUPS OF LINEAR SYSTEMS FOR W-MATRICES.   *
*   LONX        : NUMBER OF GROUPS OF LINEAR SYSTEMS FOR X-MATRICES.   *
*   LONY        : NUMBER OF GROUPS OF LINEAR SYSTEMS FOR Y-MATRICES.   *
*   LONZ        : NUMBER OF GROUPS OF LINEAR SYSTEMS FOR Z-MATRICES.   *
*   NBLW        : NUMBER OF LINEAR SYSTEMS PER W-GROUP. DIMENSION LONW *
*   NBLX        : NUMBER OF LINEAR SYSTEMS PER X-GROUP. DIMENSION LONX *
*   NBLY        : NUMBER OF LINEAR SYSTEMS PER Y-GROUP. DIMENSION LONY *
*   NBLZ        : NUMBER OF LINEAR SYSTEMS PER Z-GROUP. DIMENSION LONZ *
*   LBLW        : NUMBER OF UNKNOWNS PER W-GROUP. DIMENSION LONW       *
*   LBLX        : NUMBER OF UNKNOWNS PER X-GROUP. DIMENSION LONX       *
*   LBLY        : NUMBER OF UNKNOWNS PER Y-GROUP. DIMENSION LONY       *
*   LBLZ        : NUMBER OF UNKNOWNS PER Z-GROUP. DIMENSION LONZ       *
*   MUVW        : INDICES USED WITH W-DIRECTED COMPRESSED DIAGONAL     *
*                 STORAGE MODE MATRICES IN VECTOR MODE. DIMENSION LL4W *
*   MUVX        : INDICES USED WITH X-DIRECTED COMPRESSED DIAGONAL     *
*                 STORAGE MODE MATRICES IN VECTOR MODE. DIMENSION LL4X *
*   MUVY        : INDICES USED WITH Y-DIRECTED COMPRESSED DIAGONAL     *
*                 STORAGE MODE MATRICES IN VECTOR MODE. DIMENSION LL4Y *
*   MUVZ        : INDICES USED WITH Z-DIRECTED COMPRESSED DIAGONAL     *
*                 STORAGE MODE MATRICES IN VECTOR MODE. DIMENSION LL4Z *
*   IPVW        : W-DIRECTED VECTOR PERMUTATION MATRIX. DIMENSION LL4  *
*   IPVX        : X-DIRECTED VECTOR PERMUTATION MATRIX. DIMENSION LL4  *
*   IPVY        : Y-DIRECTED VECTOR PERMUTATION MATRIX. DIMENSION LL4  *
*   IPVZ        : Z-DIRECTED VECTOR PERMUTATION MATRIX. DIMENSION LL4  *
*                                                                      *
* INFORMATION RELATED TO CYLINDRICAL CORRECTIONS IN CARTESIAN GEOMETRY *
*   NR0         : NUMBER OF RADII.                                     *
*   RR0         : RADII. DIMENSION NR0                                 *
*   XR0         : COORDINATES ON PRINCIPAL AXIS. DIMENSION NR0         *
*   ANG         : ANGLES FOR APPLYING CIRCULAR CORRECTION.             *
*                 DIMENSION NR0                                        *
*                                                                      *
************************************************************************
*
*----
*  SCRATCH STORAGE ALLOCATION
*----
      ALLOCATE(MAT(MAXPTS),IDL(MAXPTS),VOL(MAXPTS))
*
      CALL LCMGET(IPGEOM,'STATE-VECTOR',ISTATE)
      ITYPE=ISTATE(1)
*
      IF(IMPX.GE.1) WRITE (6,'(/35H TRITRK: DEGREE OF FINITE ELEMENT I,
     1 6HELEM =,I3/9X,25HTYPE OF QUADRATURE ICOL =,I3/9X,10HTYPE OF DI,
     2 19HSCRETIZATION ICHX =,I3/)') IELEM,ICOL,ICHX
      IF((IMPX.GE.1).AND.(ISEG.GT.0)) WRITE (6,'(18H TRITRK: SUPERVECT,
     1 27HORIZATION OPTION ON. ISEG =,I4,8H  IMPV =,I3/)') ISEG,IMPV
      IF(ISTATE(9).EQ.0) THEN
         IF((ITYPE.NE.1).AND.(ITYPE.NE.2).AND.(ITYPE.NE.3).AND.
     1      (ITYPE.NE.5).AND.(ITYPE.NE.6).AND.(ITYPE.NE.7).AND.
     2      (ITYPE.NE.8).AND.(ITYPE.NE.9)) THEN
            CALL XABORT('TRITRK: DISCRETIZATION NOT AVAILABLE.')
         ENDIF
         ALLOCATE(XXX(MAXPTS+1),YYY(MAXPTS+1),ZZZ(MAXPTS+1))
*
         ALLOCATE(ISPLX(MAXPTS),ISPLY(MAXPTS),ISPLZ(MAXPTS))
         CALL READ3D(MAXPTS,MAXPTS,MAXPTS,MAXPTS,IPGEOM,IHEX,IR,ILK,
     1   SIDE,XXX,YYY,ZZZ,IMPX,LX,LY,LZ,MAT,NEL,NCODE,ICODE,ZCODE,
     2   ISPLX,ISPLY,ISPLZ,ISPLH,ISPLL)
         DEALLOCATE(ISPLX,ISPLY,ISPLZ)
         IF((ITYPE.GE.8).AND.(ICHX.EQ.2)) THEN
           IF(ISPLL.EQ.0) THEN
             CALL XABORT('TRITRK: SPLITL KEYWORD MISSING IN GEOMETRY.')
           ENDIF
           ISPLH=ISPLL
         ELSE IF(ITYPE.GE.8) THEN
           ISPLH=ISPLH+1  
         ENDIF
      ELSE
         CALL XABORT('TRITRK: DISCRETIZATION NOT AVAILABLE.')
      ENDIF
*----
*  UNFOLD HEXAGONAL GEOMETRY CASES.
*----
      CHEX=(ITYPE.EQ.8).OR.(ITYPE.EQ.9)
      IF(CHEX.AND.(IHEX.NE.9)) THEN
         ALLOCATE(IDP(MAXPTS),IMX(NEL))
         DO 30 I=1,NEL
         IMX(I)=MAT(I)
   30    CONTINUE
         LXOLD=LX
         CALL BIVALL(MAXPTS,IHEX,LXOLD,LX,IDP)
         DO 41 KZ=1,LZ
         DO 40 KX=1,LX
         KEL=IDP(KX)+(KZ-1)*LXOLD
         MAT(KX+(KZ-1)*LX)=IMX(KEL)
   40    CONTINUE
   41    CONTINUE
         DEALLOCATE(IMX,IDP)
         NEL=LX*LZ
      ENDIF
*----
*  PROCESS INFORMATION RELATED TO CYLINDRICAL CORRECTION IN CARTESIAN
*  GEOMETRIES.
*----
      CALL LCMLEN(IPGEOM,'RR0',NR0,ITYLCM)
      IF(NR0.GT.0) THEN
         IF((ITYPE.NE.5).AND.(ITYPE.NE.7)) CALL XABORT('TRITRK: CYLIND'
     1   //'RICAL CORRECTIONS ARE LIMITED TO CARTESIAN GEOMETRIES.')
         IF(IMPX.GT.0) WRITE(6,'(/33H TRITRK: PERFORM A CYLINDRICAL CO,
     2   35HRRECTION ON THE CARTESIAN BOUNDARY.)')
         ALLOCATE(RR0(NR0),XR0(NR0),ANG(NR0))
         CALL LCMGET(IPGEOM,'RR0',RR0)
         CALL LCMGET(IPGEOM,'XR0',XR0)
         CALL LCMGET(IPGEOM,'ANG',ANG)
         CALL LCMPUT(IPTRK,'RR0',NR0,2,RR0)
         CALL LCMPUT(IPTRK,'XR0',NR0,2,XR0)
         CALL LCMPUT(IPTRK,'ANG',NR0,2,ANG)
         DEALLOCATE(ANG,XR0,RR0)
      ENDIF
*
      IF(LX*LY*LZ.GT.MAXPTS) THEN
         WRITE (HSMG,'(39HTRITRK: MAXPTS SHOULD BE INCREASED FROM,I8,
     1   3H TO,I8)') MAXPTS,LX*LY*LZ
         CALL XABORT(HSMG)
      ENDIF
*----
*  1-D AND 2-D CASES.
*----
      IDIM=1
      IF((ITYPE.EQ.5).OR.(ITYPE.EQ.6).OR.(ITYPE.EQ.8)) IDIM=2
      IF((ITYPE.EQ.7).OR.(ITYPE.EQ.9)) IDIM=3
      IF((NCODE(3).EQ.0).AND.(NCODE(4).EQ.0).AND.(.NOT.CHEX)) THEN
         IF((IDIM.NE.1).OR.(LY.NE.1)) CALL XABORT('TRITRK: INVALID 1D '
     1   //'GEOMETRY.')
         NCODE(3)=2
         NCODE(4)=5
         ZCODE(3)=1.0
         ZCODE(4)=1.0
         YYY(1)=0.0
         YYY(2)=2.0
      ENDIF
      IF((NCODE(5).EQ.0).AND.(NCODE(6).EQ.0)) THEN
         IF((IDIM.EQ.3).OR.(LZ.NE.1)) CALL XABORT('TRITRK: INVALID 1D '
     1   //'OR 2D GEOMETRY.')
         NCODE(5)=2
         NCODE(6)=5
         ZCODE(5)=1.0
         ZCODE(6)=1.0
         ZZZ(1)=0.0
         ZZZ(2)=2.0
      ENDIF
*----
*  2-D CYLINDRICAL CASES.
*----
      CYLIND=(ITYPE.EQ.3).OR.(ITYPE.EQ.6)
      IF(ITYPE.EQ.6) THEN
         LY=LZ
         DO 45 I=1,LZ+1
         YYY(I)=ZZZ(I)
   45    CONTINUE
         NCODE(3)=NCODE(5)
         NCODE(4)=NCODE(6)
         ICODE(3)=ICODE(5)
         ICODE(4)=ICODE(6)
         ZCODE(3)=ZCODE(5)
         ZCODE(4)=ZCODE(6)
         NCODE(5)=0
         NCODE(6)=0
         ZCODE(5)=0.0
         ZCODE(6)=0.0
      ENDIF
*----
*  UNFOLD THE DOMAIN IN DIAGONAL SYMMETRY CASES.
*----
      IDIAG=0
      IF((NCODE(2).EQ.3).AND.(NCODE(3).EQ.3)) THEN
         IDIAG=1
         NCODE(3)=NCODE(1)
         NCODE(2)=NCODE(4)
         ICODE(3)=ICODE(1)
         ICODE(2)=ICODE(4)
         ZCODE(3)=ZCODE(1)
         ZCODE(2)=ZCODE(4)
         K=NEL
         DO 82 IZ=LZ,1,-1
         IOFF=(IZ-1)*LX*LY
         DO 81 IY=LY,1,-1
         DO 70 IX=LX,IY+1,-1
         MAT(IOFF+(IY-1)*LX+IX)=MAT(IOFF+(IX-1)*LY+IY)
   70    CONTINUE
         DO 80 IX=IY,1,-1
         MAT(IOFF+(IY-1)*LX+IX)=MAT(K)
         K=K-1
   80    CONTINUE
   81    CONTINUE
   82    CONTINUE
         NEL=LX*LY*LZ
         IF(K.NE.0) THEN
            CALL XABORT('TRITRK: UNABLE TO UNFOLD THE DOMAIN(1).')
         ENDIF
      ELSE IF((NCODE(1).EQ.3).AND.(NCODE(4).EQ.3)) THEN
         IDIAG=1
         NCODE(1)=NCODE(3)
         NCODE(4)=NCODE(2)
         ICODE(1)=ICODE(3)
         ICODE(4)=ICODE(2)
         ZCODE(1)=ZCODE(3)
         ZCODE(4)=ZCODE(2)
         K=NEL
         DO 92 IZ=LZ,1,-1
         IOFF=(IZ-1)*LX*LY
         DO 91 IY=LY,1,-1
         DO 90 IX=LX,IY,-1
         MAT(IOFF+(IY-1)*LX+IX)=MAT(K)
         K=K-1
   90    CONTINUE
   91    CONTINUE
   92    CONTINUE
         DO 102 IZ=1,LZ
         IOFF=(IZ-1)*LX*LY
         DO 101 IY=1,LY
         DO 100 IX=1,IY-1
         MAT(IOFF+(IY-1)*LX+IX)=MAT(IOFF+(IX-1)*LY+IY)
  100    CONTINUE
  101    CONTINUE
  102    CONTINUE
         NEL=LX*LY*LZ
         IF(K.NE.0) THEN
            CALL XABORT('TRITRK: UNABLE TO UNFOLD THE DOMAIN(2).')
         ENDIF
      ENDIF
      IF(IMPX.GT.5) THEN
         WRITE(6,600) 'NCODE',(NCODE(I),I=1,6)
         WRITE(6,600) 'MAT',(MAT(I),I=1,LX*LY*LZ)
      ENDIF
*
      CALL KDRCPU(TK1)
      MAXQF=6*NEL
      IF(CHEX) MAXQF=8*NEL
      IF((ICHX.EQ.1).AND.(.NOT.CHEX)) THEN
         MAXKN=NEL*(IELEM+1)**3
      ELSE IF((ICHX.EQ.2).AND.(.NOT.CHEX)) THEN
         MAXKN=NEL*(1+6*IELEM**2)
      ELSE IF((ICHX.EQ.3).AND.(.NOT.CHEX)) THEN
         MAXKN=6*NEL
      ELSE IF((ICHX.EQ.1).AND.CHEX) THEN
         IF(ISPLH.EQ.1) THEN
            MAXKN=12*NEL
         ELSE
            MAXKN=2*(1+ISPLH*(ISPLH-1)*3)*NEL
         ENDIF
      ELSE IF((ICHX.EQ.2).AND.CHEX) THEN
         MAXKN=(NEL*ISPLH**2)*(3+6*IELEM*IELEM*(IELEM+2))
         MAXQF=(NEL*ISPLH**2)*8
      ELSE IF((ICHX.EQ.3).AND.CHEX) THEN
         IF(ISPLH.EQ.1) THEN
            MAXKN=8*NEL
         ELSE
            MAXKN=(18*(ISPLH-1)**2+8)*NEL
         ENDIF
      ELSE
         CALL XABORT('TRITRK: INVALID TYPE OF DISCRETIZATION.')
      ENDIF
      IF(CYLIND) THEN
         MAXDD=NEL
      ELSE
         MAXDD=1
      ENDIF
      IF((ICHX.NE.2).AND.CHEX.AND.(IELEM.NE.1)) CALL XABORT('TRITRK: T'
     1 //'HIS HEXAGONAL DISCRETIZATIONS IS LIMITED TO LINEAR ORDER.')
      IF(CHEX.AND.(NCODE(1).EQ.5)) CALL XABORT('TRITRK: SYME BOUNDARY '
     1 //'CONDITION IS NOT AVAILABLE AROUND THE HEXAGONAL PLANE.')
      ALLOCATE(XX(NEL),YY(NEL),ZZ(NEL),DD(MAXDD),KN(MAXKN),QFR(MAXQF),
     1 IQFR(MAXQF))
      KN(:MAXKN)=0
      QFR(:MAXQF)=0.0
      IQFR(:MAXQF)=0
      LL4=0
      IF((ICHX.EQ.1).AND.(.NOT.CHEX)) THEN
         CALL TRIPKN(IELEM,LX,LY,LZ,LL4,CYLIND,XXX,YYY,ZZZ,XX,YY,ZZ,DD,
     1   KN,QFR,IQFR,VOL,MAT,NCODE,ICODE,ZCODE,IMPX)
         IF((IMPX.GT.0).AND.(IELEM.EQ.1)) THEN
            WRITE (6,'(/40H TRITRK: MESH CORNER FINITE DIFFERENCES.)')
         ENDIF
         LL4W=0
         LL4X=LL4
         LL4Y=LL4
         LL4Z=LL4
      ELSE IF((ICHX.EQ.2).AND.(.NOT.CHEX)) THEN
         CALL TRIDKN(IMPX,LX,LY,LZ,CYLIND,IELEM,LL4,LL4F,LL4X,LL4Y,
     1   LL4Z,NCODE,ICODE,ZCODE,MAT,VOL,XXX,YYY,ZZZ,XX,YY,ZZ,DD,KN,
     2   QFR,IQFR,IDL)
         MAXIP=LX*LY*LZ
         NUN=LL4
      ELSE IF((ICHX.EQ.3).AND.(.NOT.CHEX)) THEN
         MAXIP=LX*LY*LZ
         CALL TRIDFC(IMPX,LX,LY,LZ,CYLIND,NCODE,ICODE,ZCODE,MAT,XXX,
     1   YYY,ZZZ,LL0,VOL,XX,YY,ZZ,DD,KN,QFR,IQFR)
         IF(IELEM.EQ.1) THEN
            LL4=LL0
            IF(IMPX.GT.0) WRITE (6,'(/29H TRITRK: MESH CENTERED FINITE,
     1      13H DIFFERENCES.)')
         ELSE IF((IELEM.GT.1).AND.(ICHX.EQ.3)) THEN
            LL4=LL0*IELEM**IDIM
            IF(IMPX.GT.0) WRITE (6,'(/29H TRITRK: NODAL COLLOCATION ME,
     1      13HTHOD OF ORDER,I3,1H.)') IELEM
         ENDIF
*        COMPUTE INDICES IDL.
         IF(ICHX.EQ.3) THEN
*           NODAL COLLOCATION METHOD.
            NUN=0
            DO 110 K=1,NEL
            IDL(K)=0
            IF(MAT(K).EQ.0) GO TO 110
            NUN=NUN+1
            IDL(K)=1+IELEM*(NUN-1)
  110       CONTINUE
            NUN=LL4
         ENDIF
         LL4W=0
         LL4X=LL4
         LL4Y=LL4
         LL4Z=LL4
      ELSE IF((ICHX.EQ.1).AND.CHEX) THEN
         MAXIP=1
         IF(IELEM.NE.1) CALL XABORT('TRITRK: INVALID DISCRETIZATION.')
         CALL TRIPRH(ISPLH,IPTRK,LX,LZ,LL4,SIDE,ZZZ,ZZ,KN,QFR,IQFR,VOL,
     1   MAT,NCODE,ICODE,ZCODE,IMPX)
         IF(IMPX.GT.0) WRITE (6,'(/32H TRITRK: MESH CORNER FINITE DIFF,
     1   39HERENCES FOR HEXAGONAL GEOMETRY. ISPLH =,I3,1H.)') ISPLH
         LL4W=LL4
         LL4X=LL4
         LL4Y=LL4
         LL4Z=LL4
      ELSE IF((ICHX.EQ.2).AND.CHEX) THEN
         NEL=LX*LZ
         LXH=LX/(3*ISPLH**2)
         NBLOS=LXH*LZ*ISPLH**2
         NBC=INT((SQRT(REAL((4*LXH-1)/3))+1.)/2.)
         MAXIP=3*(2*LXH*ISPLH*IELEM+2*NBC-1)*ISPLH*LZ*IELEM**2
     1        +3*LXH*(LZ+1)*(ISPLH**2)*IELEM**2
         ALLOCATE(IPERT(NBLOS),FRZ(NBLOS))
         CALL TRISFH(IMPX,MAXKN,MAXIP,NBLOS,ISPLH,IELEM,LXH,LZ,MAT,SIDE,
     1   ZZZ,NCODE,ICODE,ZCODE,LL4,LL4F,LL4W,LL4X,LL4Y,LL4Z,VOL,IDL,
     2   IPERT,ZZ,FRZ,KN,QFR,IQFR)
         CALL LCMPUT(IPTRK,'IPERT',NBLOS,1,IPERT)
         CALL LCMPUT(IPTRK,'FRZ',NBLOS,2,FRZ)
         DEALLOCATE(FRZ,IPERT)
         NUN=LL4
         IF(IMPX.GT.0) WRITE (6,'(/32H TRITRK: THOMAS-RAVIART-SCHNEIDE,
     1   49HR FINITE ELEMENTS FOR HEXAGONAL GEOMETRY. ISPLH =,I3,1H.)')
     2   ISPLH
      ELSE IF((ICHX.EQ.3).AND.CHEX) THEN
         MAXIP=LX*LZ
         IF(IELEM.NE.1) CALL XABORT('TRITRK: INVALID DISCRETIZATION.')
         CALL TRIDFH(ISPLH,IPTRK,IDIM,LX,LZ,LL4,NUN,SIDE,ZZZ,ZZ,KN,QFR,
     1   IQFR,VOL,MAT,IDL,NCODE,ICODE,ZCODE,IMPX)
         IF(IMPX.GT.0) WRITE (6,'(/32H TRITRK: MESH CENTERED FINITE DI,
     1   41HFFERENCES FOR HEXAGONAL GEOMETRY. ISPLH =,I3,1H.)') ISPLH
         LL4W=LL4
         LL4X=LL4
         LL4Y=LL4
         LL4Z=LL4
      ENDIF
*----
*  APPEND THE PN FLUXES AT THE END OF UNKNOWN VECTOR.
*----
      IF(NLF.GE.2) THEN
         IF((ITYPE.EQ.2).OR.((ITYPE.EQ.5).AND.(ISPN.EQ.1)).OR.
     1                      ((ITYPE.EQ.7).AND.(ISPN.EQ.1))) THEN
            NUN=LL4+LL4*(NLF-2)/2
         ELSE IF((ITYPE.EQ.8).AND.(ISPN.EQ.1)) THEN
            NUN=NUN+NUN*(NLF-2)/2
         ELSE IF((ITYPE.EQ.9).AND.(ISPN.EQ.1)) THEN
            NUN=NUN+NUN*(NLF-2)/2
         ELSE
            CALL XABORT('TRITRK: GEOMETRY NOT SUPPORTED WITH PN.')
         ENDIF
      ENDIF
*----
*  COMPUTE INDICES IDL FOR PRIMAL FINITE ELEMENTS.
*----
      IF(ICHX.EQ.1) THEN
         NUN=LL4
         DO 130 K=1,NEL
         IF(MAT(K).EQ.0) THEN
            IDL(K)=0
         ELSE
            NUN=NUN+1
            IDL(K)=NUN
         ENDIF
  130    CONTINUE
      ENDIF
*
      IF(IMPX.GT.0) WRITE (6,'(/34H TRITRK: ORDER OF LINEAR SYSTEMS =,
     1 I8/9X,37HNUMBER OF UNKNOWNS PER ENERGY GROUP =,I8)') LL4,NUN
      DEALLOCATE(ZZZ,YYY,XXX)
      CALL KDRCPU(TK2)
      IF(IMPX.GE.2) WRITE(6,'(/37H TRITRK: CPU TIME FOR FINITE ELEMENT ,
     1 11HNUMBERING =,F7.2,2H S)') TK2-TK1
*----
*  COMPUTE INDICES MUW, MUX, MUY, MUZ, IPW, IPX, IPY AND IPZ.
*----
      CALL KDRCPU(TK1)
      IF(CHEX) ALLOCATE(MUW(LL4))
      ALLOCATE(MUX(LL4),MUY(LL4),MUZ(LL4))
      IF(CHEX) ALLOCATE(IPW(LL4))
      IF(ICHX.NE.2) THEN
         ALLOCATE(IPX(LL4),IPY(LL4),IPZ(LL4))
         DO 140 I=1,LL4
         IPX(I)=I
  140    CONTINUE
      ENDIF
*
      IF((ICHX.EQ.1).AND.(.NOT.CHEX)) THEN
         CALL BIVCOL(IPTRK,IMPX,IELEM,2)
         CALL TRICHP(IELEM,LX,LY,LZ,LL4,MAT,KN,MUX,MUY,MUZ,IPY,IPZ,IMPX)
      ELSE IF((ICHX.EQ.2).AND.(.NOT.CHEX)) THEN
         LL4W=0
         CALL BIVCOL(IPTRK,IMPX,IELEM,ICOL)
         CALL LCMSIX(IPTRK,'BIVCOL',1)
         ALLOCATE(V((IELEM+1),IELEM))
         CALL LCMGET(IPTRK,'V',V)
         CALL LCMSIX(IPTRK,' ',2)
         ALLOCATE(IPBBX(2*IELEM*LL4X),IPBBY(2*IELEM*LL4Y),
     1   IPBBZ(2*IELEM*LL4Z))
         ALLOCATE(BBX(2*IELEM*LL4X),BBY(2*IELEM*LL4Y),BBZ(2*IELEM*LL4Z))
         CALL TRICHD(IMPX,LX,LY,LZ,CYLIND,IELEM,LL4,LL4F,LL4X,LL4Y,LL4Z,
     1   MAT,VOL,XX,YY,ZZ,DD,KN,V,MUX,MUY,MUZ,IPBBX,IPBBY,IPBBZ,BBX,BBY,
     2   BBZ)
         IF(LL4X.GT.0) THEN
            CALL LCMPUT(IPTRK,'IPBBX',2*IELEM*LL4X,1,IPBBX)
            CALL LCMPUT(IPTRK,'XB',2*IELEM*LL4X,2,BBX)
         ENDIF
         IF(LL4Y.GT.0) THEN
            CALL LCMPUT(IPTRK,'IPBBY',2*IELEM*LL4Y,1,IPBBY)
            CALL LCMPUT(IPTRK,'YB',2*IELEM*LL4Y,2,BBY)
         ENDIF
         IF(LL4Z.GT.0) THEN
            CALL LCMPUT(IPTRK,'IPBBZ',2*IELEM*LL4Z,1,IPBBZ)
            CALL LCMPUT(IPTRK,'ZB',2*IELEM*LL4Z,2,BBZ)
         ENDIF
         DEALLOCATE(BBZ,BBY,BBX,IPBBZ,IPBBY,IPBBX)
         DEALLOCATE(V)
      ELSE IF((ICHX.EQ.3).AND.(.NOT.CHEX)) THEN
         CALL TRICH1(IELEM,IDIM,LX,LY,LZ,LL4,MAT,KN,MUX,MUY,MUZ,IPY,
     1   IPZ,IMPX)
      ELSE IF((ICHX.EQ.1).AND.CHEX) THEN
         CALL BIVCOL(IPTRK,IMPX,IELEM,2)
         CALL TRICH3(ISPLH,IPTRK,LX,LZ,LL4,MAT,KN,MUW,MUX,MUY,MUZ,IPW,
     1   IPX,IPY,IPZ,IMPX)
      ELSE IF((ICHX.EQ.2).AND.CHEX) THEN
         LXH=LX/(3*ISPLH**2)
         NBLOS=LXH*LZ*ISPLH**2
         ALLOCATE(IPERT(NBLOS),FRZ(NBLOS))
         CALL LCMGET(IPTRK,'IPERT',IPERT)
         CALL LCMGET(IPTRK,'FRZ',FRZ)
         CALL BIVCOL(IPTRK,IMPX,IELEM,ICOL)
         CALL LCMSIX(IPTRK,'BIVCOL',1)
         ALLOCATE(V((IELEM+1),IELEM),H((IELEM+1),IELEM))
         CALL LCMGET(IPTRK,'V',V)
         CALL LCMGET(IPTRK,'H',H)
         CALL LCMSIX(IPTRK,' ',2)
         ALLOCATE(IPBBW(2*IELEM*LL4W),IPBBX(2*IELEM*LL4X),
     1   IPBBY(2*IELEM*LL4Y),IPBBZ(2*IELEM*LL4Z))
         ALLOCATE(BBW(2*IELEM*LL4W),BBX(2*IELEM*LL4X),
     1   BBY(2*IELEM*LL4Y),BBZ(2*IELEM*LL4Z))
         ALLOCATE(CTRAN(((IELEM+1)*IELEM)**2))
         CALL TRICHH(IMPX,MAXKN,NBLOS,LXH,LZ,IELEM,ISPLH,LL4,LL4F,LL4W,
     1   LL4X,LL4Y,LL4Z,SIDE,ZZ,FRZ,IPERT,KN,V,H,MUW,MUX,MUY,MUZ,IPBBW,
     2   IPBBX,IPBBY,IPBBZ,BBW,BBX,BBY,BBZ,CTRAN)
         CALL LCMPUT(IPTRK,'CTRAN',((IELEM+1)*IELEM)**2,4,CTRAN)
         CALL LCMPUT(IPTRK,'IPBBW',2*IELEM*LL4W,1,IPBBW)
         CALL LCMPUT(IPTRK,'WB',2*IELEM*LL4W,2,BBW)
         CALL LCMPUT(IPTRK,'IPBBX',2*IELEM*LL4X,1,IPBBX)
         CALL LCMPUT(IPTRK,'XB',2*IELEM*LL4X,2,BBX)
         CALL LCMPUT(IPTRK,'IPBBY',2*IELEM*LL4Y,1,IPBBY)
         CALL LCMPUT(IPTRK,'YB',2*IELEM*LL4Y,2,BBY)
         IF(LL4Z.GT.0) THEN
            CALL LCMPUT(IPTRK,'IPBBZ',2*IELEM*LL4Z,1,IPBBZ)
            CALL LCMPUT(IPTRK,'ZB',2*IELEM*LL4Z,2,BBZ)
         ENDIF
         DEALLOCATE(BBZ,BBY,BBX,BBW,IPBBZ,IPBBY,IPBBX,IPBBW)
         DEALLOCATE(H,V,CTRAN,FRZ,IPERT)
      ELSE IF((ICHX.EQ.3).AND.CHEX) THEN
         CALL TRICH4(ISPLH,IPTRK,IDIM,LX,LZ,LL4,MAT,KN,MUW,MUX,MUY,MUZ,
     1   IPW,IPX,IPY,IPZ,IMPX)
      ENDIF
      CALL KDRCPU(TK2)
      IF(IMPX.GE.2) WRITE(6,'(/36H TRITRK: CPU TIME FOR ADI SPLITTING ,
     1 11HNUMBERING =,F7.2,2H S)') TK2-TK1
      IF(IMPX.GT.5) THEN
         I1=1
         DO 150 I=1,(NEL-1)/8+1
         I2=I1+7
         IF(I2.GT.NEL) I2=NEL
         WRITE (6,620) (J,J=I1,I2)
         WRITE (6,630) (MAT(J),J=I1,I2)
         WRITE (6,640) (IDL(J),J=I1,I2)
         WRITE (6,650) (VOL(J),J=I1,I2)
         I1=I1+8
  150    CONTINUE
      ENDIF
*----
*  SUPERVECTORIZATION CONTROL.
*----
      LTSW=0
      IF(ISEG.GT.0) THEN
         CALL KDRCPU(TK1)
         ALLOCATE(ISET(LL4))
         IF(CHEX) THEN
            ISET(1)=0
            K1=MUW(1)+1
            DO 160 I=2,LL4W
            ISET(I)=0
            K2=MUW(I)
            DO 155 J=I-K2+K1,I-1
            ISET(J)=1
  155       CONTINUE
            K1=K2+1
  160       CONTINUE
            NSYS=0
            DO 165 I=1,LL4W
            IF(ISET(I).EQ.0) NSYS=NSYS+1
  165       CONTINUE
            LONW=1+(NSYS-1)/ISEG
            ALLOCATE(NBLW(LONW),LBLW(LONW),MUVW(LONW),IPVW(LONW))
            CALL VECPER('W',IMPV,ISEG,LL4W,MUW,LONW,LTSW2,NBLW,LBLW,
     1      MUVW,IPVW)
            IMU=0
            DO 166 I=1,LONW
            IMU=IMU+LBLW(I)
  166       CONTINUE
            LTSW=MAX(LTSW,LTSW2)
            CALL LCMPUT(IPTRK,'NBLW',LONW,1,NBLW)
            CALL LCMPUT(IPTRK,'LBLW',LONW,1,LBLW)
            CALL LCMPUT(IPTRK,'MUVW',IMU,1,MUVW)
            CALL LCMPUT(IPTRK,'IPVW',LL4W,1,IPVW)
            DEALLOCATE(IPVW,MUVW,LBLW,NBLW)
            IMU=IMU*ISEG
            CALL LCMPUT(IPTRK,'LL4VW',1,1,IMU)
         ENDIF
         IF(IDIAG.EQ.0) THEN
            ISET(1)=0
            K1=MUX(1)+1
            DO 175 I=2,LL4X
            ISET(I)=0
            K2=MUX(I)
            DO 170 J=I-K2+K1,I-1
            ISET(J)=1
  170       CONTINUE
            K1=K2+1
  175       CONTINUE
            NSYS=0
            DO 180 I=1,LL4X
            IF(ISET(I).EQ.0) NSYS=NSYS+1
  180       CONTINUE
            LONX=1+(NSYS-1)/ISEG
            ALLOCATE(NBLX(LONX),LBLX(LONX),MUVX(LONX),IPVX(LONX))
            CALL VECPER('X',IMPV,ISEG,LL4X,MUX,LONX,LTSW2,NBLX,LBLX,
     1      MUVX,IPVX)
            IMU=0
            DO 185 I=1,LONX
            IMU=IMU+LBLX(I)
  185       CONTINUE
            LTSW=MAX(LTSW,LTSW2)
            CALL LCMPUT(IPTRK,'NBLX',LONX,1,NBLX)
            CALL LCMPUT(IPTRK,'LBLX',LONX,1,LBLX)
            CALL LCMPUT(IPTRK,'MUVX',IMU,1,MUVX)
            CALL LCMPUT(IPTRK,'IPVX',LL4X,1,IPVX)
            DEALLOCATE(IPVX,MUVX,LBLX,NBLX)
            IMU=IMU*ISEG
            CALL LCMPUT(IPTRK,'LL4VX',1,1,IMU)
         ENDIF
         IF(IDIM.GE.2) THEN
            ISET(1)=0
            K1=MUY(1)+1
            DO 200 I=2,LL4Y
            ISET(I)=0
            K2=MUY(I)
            DO 190 J=I-K2+K1,I-1
            ISET(J)=1
  190       CONTINUE
            K1=K2+1
  200       CONTINUE
            NSYS=0
            DO 210 I=1,LL4Y
            IF(ISET(I).EQ.0) NSYS=NSYS+1
  210       CONTINUE
            LONY=1+(NSYS-1)/ISEG
            ALLOCATE(NBLY(LONY),LBLY(LONY),MUVY(LONY),IPVY(LONY))
            CALL VECPER('Y',IMPV,ISEG,LL4Y,MUY,LONY,LTSW2,NBLY,LBLY,
     1      MUVY,IPVY)
            IMU=0
            DO 215 I=1,LONY
            IMU=IMU+LBLY(I)
  215       CONTINUE
            LTSW=MAX(LTSW,LTSW2)
            CALL LCMPUT(IPTRK,'NBLY',LONY,1,NBLY)
            CALL LCMPUT(IPTRK,'LBLY',LONY,1,LBLY)
            CALL LCMPUT(IPTRK,'MUVY',IMU,1,MUVY)
            CALL LCMPUT(IPTRK,'IPVY',LL4Y,1,IPVY)
            DEALLOCATE(IPVY,MUVY,LBLY,NBLY)
            IMU=IMU*ISEG
            CALL LCMPUT(IPTRK,'LL4VY',1,1,IMU)
         ENDIF
         IF(IDIM.EQ.3) THEN
            ISET(1)=0
            K1=MUZ(1)+1
            DO 230 I=2,LL4Z
            ISET(I)=0
            K2=MUZ(I)
            DO 220 J=I-K2+K1,I-1
            ISET(J)=1
  220       CONTINUE
            K1=K2+1
  230       CONTINUE
            NSYS=0
            DO 240 I=1,LL4Z
            IF(ISET(I).EQ.0) NSYS=NSYS+1
  240       CONTINUE
            LONZ=1+(NSYS-1)/ISEG
            ALLOCATE(NBLZ(LONZ),LBLZ(LONZ),MUVZ(LONZ),IPVZ(LONZ))
            CALL VECPER('Z',IMPV,ISEG,LL4Z,MUZ,LONZ,LTSW2,NBLZ,LBLZ,
     1      MUVZ,IPVZ)
            IMU=0
            DO 250 I=1,LONZ
            IMU=IMU+LBLZ(I)
  250       CONTINUE
            LTSW=MAX(LTSW,LTSW2)
            CALL LCMPUT(IPTRK,'NBLZ',LONZ,1,NBLZ)
            CALL LCMPUT(IPTRK,'LBLZ',LONZ,1,LBLZ)
            CALL LCMPUT(IPTRK,'MUVZ',IMU,1,MUVZ)
            CALL LCMPUT(IPTRK,'IPVZ',LL4Z,1,IPVZ)
            DEALLOCATE(IPVZ,MUVZ,LBLZ,NBLZ)
            IMU=IMU*ISEG
            CALL LCMPUT(IPTRK,'LL4VZ',1,1,IMU)
         ENDIF
         DEALLOCATE(ISET)
         CALL KDRCPU(TK2)
         IF(IMPX.GE.2) WRITE(6,'(/33H TRITRK: CPU TIME FOR SUPERVECTOR,
     1   19HIZATION NUMBERING =,F7.2,2H S)') TK2-TK1
      ENDIF
*----
*  SAVE STATE-VECTOR AND TRACKING INFORMATION.
*----
      IGP(:NSTATE)=0
      IGP(1)=NEL
      IGP(2)=NUN
      IF(ILK) THEN
         IGP(3)=0
      ELSE
         IGP(3)=1
      ENDIF
      IGP(4)=ISTATE(7)
      IGP(5)=0
      IGP(6)=ITYPE
      IGP(7)=IHEX
      IGP(8)=IDIAG
      IGP(9)=IELEM
      IGP(10)=ICOL
      IGP(11)=LL4
      IGP(12)=ICHX
      IGP(13)=ISPLH
      IGP(14)=LX
      IGP(15)=LY
      IGP(16)=LZ
      IGP(17)=ISEG
      IF(ISEG.NE.0) THEN
         IGP(18)=IMPV
         IGP(19)=LTSW
         IGP(20)=LONW
         IGP(21)=LONX
         IGP(22)=LONY
         IGP(23)=LONZ
      ENDIF
      IGP(24)=NR0
      IF(ICHX.EQ.2) THEN
         IGP(25)=LL4F
         IGP(26)=LL4W
         IGP(27)=LL4X
         IGP(28)=LL4Y
         IGP(29)=LL4Z
      ENDIF
      IGP(30)=NLF
      IGP(31)=ISPN
      IGP(32)=ISCAT
      IGP(33)=NADI
      IGP(34)=NVD
      CALL LCMPUT(IPTRK,'STATE-VECTOR',NSTATE,1,IGP)
      CALL LCMPUT(IPTRK,'MATCOD',NEL,1,MAT)
      CALL LCMPUT(IPTRK,'VOLUME',NEL,2,VOL)
      CALL LCMPUT(IPTRK,'KEYFLX',NEL,1,IDL)
      CALL LCMPUT(IPTRK,'NCODE',6,1,NCODE)
      CALL LCMPUT(IPTRK,'ZCODE',6,2,ZCODE)
      CALL LCMPUT(IPTRK,'ICODE',6,1,ICODE)
      CALL LCMPUT(IPTRK,'ZZ',NEL,2,ZZ)
      CALL LCMPUT(IPTRK,'KN',MAXKN,1,KN)
      CALL LCMPUT(IPTRK,'QFR',MAXQF,2,QFR)
      CALL LCMPUT(IPTRK,'IQFR',MAXQF,1,IQFR)
      IF(ICHX.NE.2) THEN
         CALL LCMPUT(IPTRK,'IPX',LL4,1,IPX)
         DEALLOCATE(IPX)
      ENDIF
      IF(CHEX) THEN
         CALL LCMPUT(IPTRK,'SIDE',1,2,SIDE)
         CALL LCMPUT(IPTRK,'MUW',LL4W,1,MUW)
         IF(ICHX.NE.2) THEN
            CALL LCMPUT(IPTRK,'IPW',LL4,1,IPW)
            DEALLOCATE(IPW)
         ENDIF
         DEALLOCATE(MUW)
      ELSE
         CALL LCMPUT(IPTRK,'XX',NEL,2,XX)
         CALL LCMPUT(IPTRK,'YY',NEL,2,YY)
         IF(.NOT.CYLIND) DD=0.0
         CALL LCMPUT(IPTRK,'DD',MAXDD,2,DD)
      ENDIF
      DEALLOCATE(XX,YY,ZZ,DD,KN,QFR,IQFR)
      IF((IDIAG.EQ.0).AND.(LL4X.GT.0)) THEN
         CALL LCMPUT(IPTRK,'MUX',LL4X,1,MUX)
      ENDIF
      IF((IDIM.GE.2).AND.(LL4Y.GT.0)) THEN
         CALL LCMPUT(IPTRK,'MUY',LL4Y,1,MUY)
         IF(ICHX.NE.2) THEN
            CALL LCMPUT(IPTRK,'IPY',LL4,1,IPY)
            DEALLOCATE(IPY)
         ENDIF
      ELSE
         IF(ICHX.NE.2) DEALLOCATE(IPY)
      ENDIF
      IF((IDIM.EQ.3).AND.(LL4Z.GT.0)) THEN
         CALL LCMPUT(IPTRK,'MUZ',LL4Z,1,MUZ)
         IF(ICHX.NE.2) THEN
            CALL LCMPUT(IPTRK,'IPZ',LL4,1,IPZ)
            DEALLOCATE(IPZ)
         ENDIF
      ELSE
         IF(ICHX.NE.2) DEALLOCATE(IPZ)
      ENDIF
      DEALLOCATE(MUZ,MUY,MUX)
*----
*  SCRATCH STORAGE DEALLOCATION
*----
      DEALLOCATE(MAT,IDL,VOL)
      RETURN
*
  600 FORMAT(/26H TRITRK: VALUES OF VECTOR ,A6,4H ARE/(1X,1P,20I6))
  620 FORMAT (///11H REGION    ,8(I8,6X,1HI))
  630 FORMAT (   11H MIXTURE   ,8(I8,6X,1HI))
  640 FORMAT (   11H POINTER   ,8(I8,6X,1HI))
  650 FORMAT (   11H VOLUME    ,8(1P,E13.6,2H I))
      END