1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
|
*DECK TRISPS
SUBROUTINE TRISPS(IPTRK,IPMACR,IPMACP,IPSYS,IMPX,NGRP,NEL,NLF,
1 NANI,NBFIS,NALBP,LDIFF,IPR,MAT,VOL,NBMIX)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Recover the cross-section data in LCM object with pointer IPMACR,
* compute and store the corresponding Trivac system matrices for a
* simplified PN approximation (or a perturbation to the system
* matrices).
*
*Copyright:
* Copyright (C) 2005 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IPTRK L_TRACK pointer to the TRIVAC tracking information.
* IPMACR L_MACROLIB pointer to the unperturbed cross sections.
* IPMACP L_MACROLIB pointer to the perturbed cross sections if
* IPR.gt.0. Equal to IPMACR if IPR=0.
* IPSYS L_SYSTEM pointer to system matrices.
* IMPX print parameter (equal to zero for no print).
* NGRP number of energy groups.
* NEL total number of finite elements.
* NLF number of Legendre orders for the flux (even number).
* NANI number of Legendre orders for the scattering cross sections.
* NBFIS number of fissionable isotopes.
* NALBP number of physical albedos per energy group.
* LDIFF flag set to .true. to use 1/3D as 'NTOT1' cross sections.
* IPR type of assembly:
* =0: calculation of the system matrices;
* =1: calculation of the derivative of these matrices;
* =2: calculation of the first variation of these matrices;
* =3: identical to IPR=2, but these variation are added to
* unperturbed system matrices.
* MAT index-number of the mixture type assigned to each volume.
* VOL volumes.
* NBMIX total number of material mixtures in the macrolib.
*
*-----------------------------------------------------------------------
*
USE GANLIB
*----
* SUBROUTINE ARGUMENTS
*----
TYPE(C_PTR) IPTRK,IPMACR,IPMACP,IPSYS
INTEGER IMPX,NGRP,NEL,NLF,NANI,NBFIS,NALBP,IPR,MAT(NEL),NBMIX
REAL VOL(NEL)
LOGICAL LDIFF
*----
* LOCAL VARIABLES
*----
CHARACTER TEXDIG*12,TEXT12*12,CM*2
LOGICAL LFIS
TYPE(C_PTR) JPMACP,KPMACP
REAL, DIMENSION(:), ALLOCATABLE :: WORK
REAL, DIMENSION(:,:), ALLOCATABLE :: GAMMA,SGD,ZUFIS
REAL, DIMENSION(:,:,:), ALLOCATABLE :: CHI
DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: GAR
DOUBLE PRECISION, DIMENSION(:,:,:), ALLOCATABLE :: RCAT,RCATI,
1 RCAT2
*----
* SCRATCH STORAGE ALLOCATION
*----
ALLOCATE(GAMMA(NALBP,NGRP),SGD(NBMIX,2*NLF),WORK(NBMIX*NGRP),
1 CHI(NBMIX,NBFIS,NGRP),ZUFIS(NBMIX,NBFIS))
ALLOCATE(RCAT(NGRP,NGRP,NBMIX),RCATI(NGRP,NGRP,NBMIX))
*----
* PROCESS PHYSICAL ALBEDOS.
*----
IF(NALBP.GT.0) THEN
CALL TRIALB(IPTRK,IPMACR,IPMACP,IPSYS,NGRP,NALBP,IPR,GAMMA)
ENDIF
*----
* PROCESS MACROLIB INFORMATION FOR VARIOUS LEGENDRE ORDERS AND
* INVERSION OF THE REMOVAL MATRIX.
*----
IF(NLF.EQ.0) CALL XABORT('TRISPS: SPN APPROXIMATION REQUESTED.')
DO 142 IL=1,NLF
WRITE(CM,'(I2.2)') IL-1
CALL TRIRCA(IPMACR,IPMACR,NGRP,NBMIX,NANI,LDIFF,IL,0,RCAT)
IF(IPR.EQ.0) THEN
DO 20 IBM=1,NBMIX
DO 15 JGR=1,NGRP
DO 10 IGR=1,NGRP
RCATI(IGR,JGR,IBM)=RCAT(IGR,JGR,IBM)
10 CONTINUE
15 CONTINUE
CALL ALINVD(NGRP,RCATI(1,1,IBM),NGRP,IER)
IF(IER.NE.0) CALL XABORT('TRISPS: SINGULAR MATRIX(1).')
20 CONTINUE
ELSE
ALLOCATE(RCAT2(NGRP,NGRP,NBMIX),GAR(NGRP))
CALL TRIRCA(IPMACR,IPMACP,NGRP,NBMIX,NANI,LDIFF,IL,IPR,RCAT2)
IF(IPR.EQ.1) THEN
DO 62 IBM=1,NBMIX
DO 31 JGR=1,NGRP
DO 30 IGR=1,NGRP
RCATI(IGR,JGR,IBM)=RCAT(IGR,JGR,IBM)
RCAT(IGR,JGR,IBM)=RCAT2(IGR,JGR,IBM)
30 CONTINUE
31 CONTINUE
CALL ALINVD(NGRP,RCATI(1,1,IBM),NGRP,IER)
IF(IER.NE.0) CALL XABORT('TRISPS: SINGULAR MATRIX(2).')
DO 42 JGR=1,NGRP
RCAT2(:NGRP,JGR,IBM)=0.0D0
DO 41 IGR=1,NGRP
DO 40 KGR=1,NGRP
RCAT2(IGR,JGR,IBM)=RCAT2(IGR,JGR,IBM)+RCATI(IGR,KGR,IBM)*
1 RCAT(KGR,JGR,IBM)
40 CONTINUE
41 CONTINUE
42 CONTINUE
DO 61 JGR=1,NGRP
GAR(:NGRP)=0.0D0
DO 51 IGR=1,NGRP
DO 50 KGR=1,NGRP
GAR(IGR)=GAR(IGR)+RCAT2(IGR,KGR,IBM)*RCATI(KGR,JGR,IBM)
50 CONTINUE
51 CONTINUE
DO 60 KGR=1,NGRP
RCATI(KGR,JGR,IBM)=-GAR(KGR)
60 CONTINUE
61 CONTINUE
62 CONTINUE
ELSE IF(IPR.EQ.2) THEN
DO 82 IBM=1,NBMIX
DO 71 JGR=1,NGRP
DO 70 IGR=1,NGRP
RCATI(IGR,JGR,IBM)=RCAT(IGR,JGR,IBM)
RCAT(IGR,JGR,IBM)=RCAT2(IGR,JGR,IBM)
RCAT2(IGR,JGR,IBM)=RCAT(IGR,JGR,IBM)+RCATI(IGR,JGR,IBM)
70 CONTINUE
71 CONTINUE
CALL ALINVD(NGRP,RCATI(1,1,IBM),NGRP,IER)
IF(IER.NE.0) CALL XABORT('TRISPS: SINGULAR MATRIX(3).')
CALL ALINVD(NGRP,RCAT2(1,1,IBM),NGRP,IER)
IF(IER.NE.0) CALL XABORT('TRISPS: SINGULAR MATRIX(4).')
DO 81 JGR=1,NGRP
DO 80 IGR=1,NGRP
RCATI(IGR,JGR,IBM)=RCAT2(IGR,JGR,IBM)-RCATI(IGR,JGR,IBM)
80 CONTINUE
81 CONTINUE
82 CONTINUE
ELSE IF(IPR.EQ.3) THEN
DO 100 IBM=1,NBMIX
DO 91 JGR=1,NGRP
DO 90 IGR=1,NGRP
RCAT(IGR,JGR,IBM)=RCAT(IGR,JGR,IBM)+RCAT2(IGR,JGR,IBM)
RCATI(IGR,JGR,IBM)=RCAT(IGR,JGR,IBM)
90 CONTINUE
91 CONTINUE
CALL ALINVD(NGRP,RCATI(1,1,IBM),NGRP,IER)
IF(IER.NE.0) CALL XABORT('TRISPS: SINGULAR MATRIX(5).')
100 CONTINUE
ENDIF
DEALLOCATE(GAR,RCAT2)
ENDIF
*
DO 141 IGR=1,NGRP
IGMIN=IGR
IGMAX=IGR
DO 111 IBM=1,NBMIX
DO 110 JGR=1,NGRP
IF((RCAT(IGR,JGR,IBM).NE.0.0).OR.(RCATI(IGR,JGR,IBM).NE.0.0)) THEN
IGMIN=MIN(IGMIN,JGR)
IGMAX=MAX(IGMAX,JGR)
ENDIF
110 CONTINUE
111 CONTINUE
DO 140 JGR=IGMIN,IGMAX
DO 120 IBM=1,NBMIX
WORK(IBM)=REAL(RCAT(IGR,JGR,IBM))
120 CONTINUE
WRITE(TEXT12,'(4HSCAR,A2,2I3.3)') CM,IGR,JGR
CALL LCMPUT(IPSYS,TEXT12,NBMIX,2,WORK)
DO 130 IBM=1,NBMIX
WORK(IBM)=REAL(RCATI(IGR,JGR,IBM))
130 CONTINUE
WRITE(TEXT12,'(4HSCAI,A2,2I3.3)') CM,IGR,JGR
CALL LCMPUT(IPSYS,TEXT12,NBMIX,2,WORK)
140 CONTINUE
141 CONTINUE
142 CONTINUE
*----
* COMPUTE AND FACTORIZE THE DIAGONAL SYSTEM MATRICES.
*----
DO 162 IGR=1,NGRP
DO 150 IL=1,NLF
WRITE(TEXT12,'(4HSCAR,I2.2,2I3.3)') IL-1,IGR,IGR
CALL LCMGET(IPSYS,TEXT12,SGD(1,IL))
WRITE(TEXT12,'(4HSCAI,I2.2,2I3.3)') IL-1,IGR,IGR
CALL LCMGET(IPSYS,TEXT12,SGD(1,NLF+IL))
150 CONTINUE
WRITE(TEXT12,'(1HA,2I3.3)') IGR,IGR
CALL TRIASN(TEXT12,IPTRK,IPSYS,IMPX,NBMIX,NEL,NLF,NALBP,IPR,MAT,
1 VOL,GAMMA(1,IGR),SGD(1,1),SGD(1,1+NLF))
*----
* PUT A FLAG IN IPSYS TO IDENTIFY NON-ZERO SCATTERING TERMS.
*----
DO 161 IL=1,NLF
DO 160 JGR=1,NGRP
WRITE(TEXT12,'(4HSCAR,I2.2,2I3.3)') IL-1,IGR,JGR
CALL LCMLEN(IPSYS,TEXT12,LENGT,ITYLCM)
IF(LENGT.EQ.NBMIX) THEN
WRITE(TEXT12,'(1HA,2I3.3)') IGR,JGR
CALL LCMPUT(IPSYS,TEXT12,1,2,0.0)
ENDIF
160 CONTINUE
161 CONTINUE
162 CONTINUE
*----
* PROCESS FISSION SPECTRUM TERMS
*----
JPMACP=LCMGID(IPMACP,'GROUP')
KPMACP=LCMGIL(JPMACP,1)
CALL LCMLEN(KPMACP,'CHI',LENGT,ITYLCM)
IF(LENGT.GT.0) THEN
IF(LENGT.NE.NBMIX*NBFIS) CALL XABORT('TRISPS: INVALID LENGTH '
1 //'FOR CHI INFORMATION.')
DO 180 IGR=1,NGRP
KPMACP=LCMGIL(JPMACP,IGR)
CALL LCMGET(KPMACP,'CHI',CHI(1,1,IGR))
180 CONTINUE
ELSE
DO 192 IBM=1,NBMIX
DO 191 IFISS=1,NBFIS
CHI(IBM,IFISS,1)=1.0
DO 190 IGR=2,NGRP
CHI(IBM,IFISS,IGR)=0.0
190 CONTINUE
191 CONTINUE
192 CONTINUE
ENDIF
*----
* PROCESS FISSION NUSIGF TERMS
*----
DO 230 IGR=1,NGRP
* PROCESS SECONDARY GROUP IGR.
LFIS=.FALSE.
DO 201 IBM=1,NBMIX
DO 200 IFISS=1,NBFIS
LFIS=LFIS.OR.(CHI(IBM,IFISS,IGR).NE.0.0)
200 CONTINUE
201 CONTINUE
IF(LFIS) THEN
DO 220 JGR=1,NGRP
KPMACP=LCMGIL(JPMACP,JGR)
CALL LCMLEN(KPMACP,'NUSIGF',LENGT,ITYLCM)
IF(LENGT.GT.0) THEN
IF(LENGT.NE.NBMIX*NBFIS) CALL XABORT('TRISPS: INVALID LENG'
1 //'TH FOR NUSIGF INFORMATION.')
CALL LCMGET(KPMACP,'NUSIGF',ZUFIS)
SGD(:NBMIX,1)=0.0
DO 211 IBM=1,NBMIX
DO 210 IFISS=1,NBFIS
SGD(IBM,1)=SGD(IBM,1)+CHI(IBM,IFISS,IGR)*ZUFIS(IBM,IFISS)
210 CONTINUE
211 CONTINUE
WRITE(TEXDIG,'(4HFISS,2I3.3)') IGR,JGR
CALL LCMPUT(IPSYS,TEXDIG,NBMIX,2,SGD(1,1))
WRITE (TEXDIG,'(1HB,2I3.3)') IGR,JGR
CALL TRIDIG(TEXDIG,IPTRK,IPSYS,IMPX,NBMIX,NEL,IPR,MAT,VOL,
1 SGD)
ENDIF
220 CONTINUE
ENDIF
230 CONTINUE
*----
* SCRATCH STORAGE DEALLOCATION
*----
DEALLOCATE(RCAT,RCATI)
DEALLOCATE(GAMMA,SGD,WORK,CHI,ZUFIS)
RETURN
END
|