1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
|
*DECK TRIRWW
SUBROUTINE TRIRWW (IR,NEL,LL4,VOL,MAT,XSGD,SIDE,ZZ,KN,QFR,MUW,
1 A11W,ISPLH,R,Q,RH,QH,RT,QT)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Assembly of system matrices for a mesh corner finite difference
* discretization in hexagonal geometry.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Benaboud
*
*Parameters: input
* IR first dimension of matrix SGD.
* NEL total number of finite elements.
* ll4 order of system matrices.
* VOL volume of each element.
* MAT mixture index assigned to each element.
* XSGD nuclear properties, derivatives or first variations of
* nuclear properties per material mixture:
* XSGD(L,1): W-, X-, and Y-oriented diffusion coefficients;
* XSGD(L,3): Z-oriented diffusion coefficients;
* XSGD(L,4): removal macroscopic cross section.
* SIDE side of an hexagon.
* ZZ Z-directed mesh spacings.
* KN element-ordered unknown list (dimensionned to KN(ICOF*NEL)
* where ICOF=12 or 14).
* QFR element-ordered boundary conditions.
* MUW W-oriented compressed storage mode indices.
* MUX X-oriented compressed storage mode indices.
* MUY Y-oriented compressed storage mode indices.
* MUZ Z-oriented compressed storage mode indices.
* IPX X-oriented permutation matrices.
* IPY Y-oriented permutation matrices.
* IPZ Z-oriented permutation matrices.
* ISPLH hexagonal mesh-splitting flag:
* =1 for complete hexagons; >1 for triangular elements.
* R unit matrix.
* Q unit matrix.
* RH unit matrix.
* QH unit matrix.
* RT unit matrix.
* QT unit matrix.
*
*Parameters: output
* A11W W-oriented matrix corresponding to the divergence (i.e
* leakage) and removal terms (should be initialized by the
* calling program).
* A11X X-oriented matrix corresponding to the divergence (i.e
* leakage) and removal terms (should be initialized by the
* calling program).
* A11Y Y-oriented matrix corresponding to the divergence (i.e
* leakage) and removal terms (should be initialized by the
* calling program).
* A11Z Z-oriented matrix corresponding to the divergence (i.e
* leakage) and removal terms (should be initialized by the
* calling program).
*
*-----------------------------------------------------------------------
*
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER IR,NEL,LL4,MAT(NEL),KN(*),MUW(LL4),ISPLH
REAL VOL(NEL),XSGD(IR,4),SIDE,ZZ(NEL),QFR(8*NEL),A11W(*),R(2,2),
> Q(2,2),RH(6,6),QH(6,6),RT(3,3),QT(3,3)
*----
* LOCAL VARIABLES
*----
INTEGER ISR(8,25)
REAL R2DP(4)
DOUBLE PRECISION QTHP(14,14),QTHZ(14,14),RTHG(14,14),
> HW(14,14),HX(14,14),HY(14,14),HZ(14,14)
DOUBLE PRECISION RR,QQP,QQZ,VOL0,VOL1,DZ,VAR1
DATA R2DP / 4*0.25 /
*----
* ASSEMBLY OF MATRIX A11W
*----
CALL TRIRMA(ISPLH,R,Q,RH,QH,RT,QT,LL,LC,ISR,QTHP,QTHZ,RTHG,HW,HX,
> HY,HZ)
NUM1=0
NUM2=0
VOL1=SIDE*SIDE
DO 160 K=1,NEL
L=MAT(K)
IF(L.EQ.0) GO TO 160
VOL0=VOL(K)
IF(VOL0.EQ.0.0) GO TO 150
DZ=ZZ(K)
DO 110 I=1,LL
INW1=KN(NUM1+I)
IF(INW1.EQ.0) GO TO 110
KEY0=MUW(INW1)-INW1
DO 100 J=1,LL
INW2=KN(NUM1+J)
IF(INW2.EQ.0) GO TO 100
IF(INW2.EQ.INW1) THEN
QQP=QTHP(I,J)*DZ
QQZ=QTHZ(I,J)*VOL1/DZ
KEY=KEY0+INW2
VAR1=QQP*XSGD(L,1)+QQZ*XSGD(L,3)
A11W(KEY)=A11W(KEY)+REAL(VAR1)
ELSE IF((INW2.LT.INW1).AND.(HW(I,J).NE.0.0)) THEN
QQP=QTHP(I,J)*HW(I,J)*DZ
KEY=KEY0+INW2
A11W(KEY)=A11W(KEY)+REAL(QQP)*XSGD(L,1)
ENDIF
100 CONTINUE
RR=RTHG(I,I)*VOL1*DZ
KEY=KEY0+INW1
A11W(KEY)=A11W(KEY)+REAL(RR)*XSGD(L,4)
110 CONTINUE
DO 140 IC=1,8
QFR1=QFR(NUM2+IC)
IF(QFR1.EQ.0.0) GO TO 140
IF(IC.LT.7) THEN
DO 120 I1=1,4
I=ISR(IC,I1)
INW1=KN(NUM1+I)
IF(INW1.EQ.0) GO TO 120
KEY=MUW(INW1)
RR=R2DP(I1)
A11W(KEY)=A11W(KEY)+REAL(RR)*QFR1
120 CONTINUE
ELSE
DO 130 I1=1,LC
I=ISR(IC,I1)
INW1=KN(NUM1+I)
IF(INW1.EQ.0) GO TO 130
KEY=MUW(INW1)
RR=RTHG(I1,I1)
A11W(KEY)=A11W(KEY)+REAL(RR)*QFR1
130 CONTINUE
ENDIF
140 CONTINUE
150 NUM1=NUM1+LL
NUM2=NUM2+8
160 CONTINUE
RETURN
END
*
SUBROUTINE TRIRWX (IR,NEL,LL4,VOL,MAT,XSGD,SIDE,ZZ,KN,QFR,MUX,IPX,
> A11X,ISPLH,R,Q,RH,QH,RT,QT)
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER IR,NEL,LL4,MAT(NEL),KN(*),MUX(LL4),IPX(LL4),ISPLH
REAL VOL(NEL),XSGD(IR,4),SIDE,ZZ(NEL),QFR(8*NEL),A11X(*),R(2,2),
> Q(2,2),RH(6,6),QH(6,6),RT(3,3),QT(3,3)
*----
* LOCAL VARIABLES
*----
INTEGER ISR(8,25)
REAL R2DP(4)
DOUBLE PRECISION QTHP(14,14),QTHZ(14,14),RTHG(14,14),
> HW(14,14),HX(14,14),HY(14,14),HZ(14,14)
DOUBLE PRECISION RR,QQP,QQZ,VOL0,VOL1,DZ,VAR1
DATA R2DP / 4*0.25 /
*----
* ASSEMBLY OF MATRIX A11X
*----
CALL TRIRMA(ISPLH,R,Q,RH,QH,RT,QT,LL,LC,ISR,QTHP,QTHZ,RTHG,HW,HX,
> HY,HZ)
NUM1=0
NUM2=0
VOL1=SIDE*SIDE
DO 230 K=1,NEL
L=MAT(K)
IF(L.EQ.0) GO TO 230
VOL0=VOL(K)
IF(VOL0.EQ.0.0) GO TO 220
DZ=ZZ(K)
DO 180 I=1,LL
INW1=KN(NUM1+I)
IF(INW1.EQ.0) GO TO 180
INX1=IPX(INW1)
KEY0=MUX(INX1)-INX1
DO 170 J=1,LL
INW2=KN(NUM1+J)
IF(INW2.EQ.0) GO TO 170
INX2=IPX(INW2)
IF(INX2.EQ.INX1) THEN
QQP=QTHP(I,J)*DZ
QQZ=QTHZ(I,J)*VOL1/DZ
KEY=KEY0+INX2
VAR1=QQP*XSGD(L,1)+QQZ*XSGD(L,3)
A11X(KEY)=A11X(KEY)+REAL(VAR1)
ELSE IF((INX2.LT.INX1).AND.(HX(I,J).NE.0.0)) THEN
QQP=QTHP(I,J)*HX(I,J)*DZ
KEY=KEY0+INX2
A11X(KEY)=A11X(KEY)+REAL(QQP)*XSGD(L,1)
ENDIF
170 CONTINUE
RR=RTHG(I,I)*VOL1*DZ
KEY=KEY0+INX1
A11X(KEY)=A11X(KEY)+REAL(RR)*XSGD(L,4)
180 CONTINUE
DO 210 IC=1,8
QFR1=QFR(NUM2+IC)
IF(QFR1.EQ.0.0) GO TO 210
IF(IC.LT.7) THEN
DO 190 I1=1,4
I=ISR(IC,I1)
INW1=KN(NUM1+I)
IF(INW1.EQ.0) GO TO 190
INX1=IPX(INW1)
KEY=MUX(INX1)
RR=R2DP(I1)
A11X(KEY)=A11X(KEY)+REAL(RR)*QFR1
190 CONTINUE
ELSE
DO 200 I1=1,LC
I=ISR(IC,I1)
INW1=KN(NUM1+I)
IF(INW1.EQ.0) GO TO 200
INX1=IPX(INW1)
KEY=MUX(INX1)
RR=RTHG(I1,I1)
A11X(KEY)=A11X(KEY)+REAL(RR)*QFR1
200 CONTINUE
ENDIF
210 CONTINUE
220 NUM1=NUM1+LL
NUM2=NUM2+8
230 CONTINUE
RETURN
END
*
SUBROUTINE TRIRWY (IR,NEL,LL4,VOL,MAT,XSGD,SIDE,ZZ,KN,QFR,MUY,IPY,
> A11Y,ISPLH,R,Q,RH,QH,RT,QT)
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER IR,NEL,LL4,MAT(NEL),KN(*),MUY(LL4),IPY(LL4),ISPLH
REAL VOL(NEL),XSGD(IR,4),SIDE,ZZ(NEL),QFR(8*NEL),A11Y(*),R(2,2),
> Q(2,2),RH(6,6),QH(6,6),RT(3,3),QT(3,3)
*----
* LOCAL VARIABLES
*----
INTEGER ISR(8,25)
REAL R2DP(4)
DOUBLE PRECISION QTHP(14,14),QTHZ(14,14),RTHG(14,14),
> HW(14,14),HX(14,14),HY(14,14),HZ(14,14)
DOUBLE PRECISION RR,QQP,QQZ,VOL0,VOL1,DZ,VAR1
DATA R2DP / 4*0.25 /
*----
* ASSEMBLY OF MATRIX A11Y
*----
CALL TRIRMA(ISPLH,R,Q,RH,QH,RT,QT,LL,LC,ISR,QTHP,QTHZ,RTHG,HW,HX,
> HY,HZ)
NUM1=0
NUM2=0
VOL1=SIDE*SIDE
DO 300 K=1,NEL
L=MAT(K)
IF(L.EQ.0) GO TO 300
VOL0=VOL(K)
IF(VOL0.EQ.0.0) GO TO 290
DZ=ZZ(K)
DO 250 I=1,LL
INW1=KN(NUM1+I)
IF(INW1.EQ.0) GO TO 250
INY1=IPY(INW1)
KEY0=MUY(INY1)-INY1
DO 240 J=1,LL
INW2=KN(NUM1+J)
IF(INW2.EQ.0) GO TO 240
INY2=IPY(INW2)
IF(INY2.EQ.INY1) THEN
QQP=QTHP(I,J)*DZ
QQZ=QTHZ(I,J)*VOL1/DZ
KEY=KEY0+INY2
VAR1=QQP*XSGD(L,1)+QQZ*XSGD(L,3)
A11Y(KEY)=A11Y(KEY)+REAL(VAR1)
ELSE IF((INY2.LT.INY1).AND.(HY(I,J).NE.0.0)) THEN
QQP=QTHP(I,J)*HY(I,J)*DZ
KEY=KEY0+INY2
A11Y(KEY)=A11Y(KEY)+REAL(QQP)*XSGD(L,1)
ENDIF
240 CONTINUE
RR=RTHG(I,I)*VOL1*DZ
KEY=KEY0+INY1
A11Y(KEY)=A11Y(KEY)+REAL(RR)*XSGD(L,4)
250 CONTINUE
DO 280 IC=1,8
QFR1=QFR(NUM2+IC)
IF(QFR1.EQ.0.0) GO TO 280
IF(IC.LT.7) THEN
DO 260 I1=1,4
I=ISR(IC,I1)
INW1=KN(NUM1+I)
IF(INW1.EQ.0) GO TO 260
INY1=IPY(INW1)
KEY=MUY(INY1)
RR=R2DP(I1)
A11Y(KEY)=A11Y(KEY)+REAL(RR)*QFR1
260 CONTINUE
ELSE
DO 270 I1=1,LC
I=ISR(IC,I1)
INW1=KN(NUM1+I)
IF(INW1.EQ.0) GO TO 270
INY1=IPY(INW1)
KEY=MUY(INY1)
RR=RTHG(I1,I1)
A11Y(KEY)=A11Y(KEY)+REAL(RR)*QFR1
270 CONTINUE
ENDIF
280 CONTINUE
290 NUM1=NUM1+LL
NUM2=NUM2+8
300 CONTINUE
RETURN
END
*
SUBROUTINE TRIRWZ (IR,NEL,LL4,VOL,MAT,XSGD,SIDE,ZZ,KN,QFR,MUZ,IPZ,
> A11Z,ISPLH,R,Q,RH,QH,RT,QT)
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER IR,NEL,LL4,MAT(NEL),KN(*),MUZ(LL4),IPZ(LL4),ISPLH
REAL VOL(NEL),XSGD(IR,4),SIDE,ZZ(NEL),QFR(8*NEL),A11Z(*),R(2,2),
> Q(2,2),RH(6,6),QH(6,6),RT(3,3),QT(3,3)
*----
* LOCAL VARIABLES
*----
INTEGER ISR(8,25)
REAL R2DP(4)
DOUBLE PRECISION QTHP(14,14),QTHZ(14,14),RTHG(14,14),
> HW(14,14),HX(14,14),HY(14,14),HZ(14,14)
DOUBLE PRECISION RR,QQP,QQZ,VOL0,VOL1,DZ,VAR1
DATA R2DP / 4*0.25 /
*----
* ASSEMBLY OF MATRIX A11Z
*----
CALL TRIRMA(ISPLH,R,Q,RH,QH,RT,QT,LL,LC,ISR,QTHP,QTHZ,RTHG,HW,HX,
> HY,HZ)
NUM1=0
NUM2=0
VOL1=SIDE*SIDE
DO 360 K=1,NEL
L=MAT(K)
IF(L.EQ.0) GO TO 360
VOL0=VOL(K)
IF(VOL0.EQ.0.0) GO TO 350
DZ=ZZ(K)
DO 320 I=1,LL
INW1=KN(NUM1+I)
IF(INW1.EQ.0) GO TO 320
INZ1=IPZ(INW1)
KEY0=MUZ(INZ1)-INZ1
DO 310 J=1,LL
INW2=KN(NUM1+J)
IF(INW2.EQ.0) GO TO 310
INZ2=IPZ(INW2)
IF(INZ2.EQ.INZ1) THEN
QQP=QTHP(I,J)*DZ
QQZ=QTHZ(I,J)*VOL1/DZ
KEY=KEY0+INZ2
VAR1=QQP*XSGD(L,1)+QQZ*XSGD(L,3)
A11Z(KEY)=A11Z(KEY)+REAL(VAR1)
ELSE IF((INZ2.LT.INZ1).AND.(HZ(I,J).NE.0.0)) THEN
QQZ=QTHZ(I,J)*VOL1/DZ
KEY=KEY0+INZ2
A11Z(KEY)=A11Z(KEY)+REAL(QQZ)*XSGD(L,1)
ENDIF
310 CONTINUE
RR=RTHG(I,I)*VOL1*DZ
KEY=KEY0+INZ1
A11Z(KEY)=A11Z(KEY)+REAL(RR)*XSGD(L,4)
320 CONTINUE
DO 340 IC=1,8
QFR1=QFR(NUM2+IC)
IF(QFR1.EQ.0.0) GO TO 340
IF(IC.LT.7) THEN
DO 330 I1=1,4
I=ISR(IC,I1)
INW1=KN(NUM1+I)
IF(INW1.EQ.0) GO TO 330
INZ1=IPZ(INW1)
KEY=MUZ(INZ1)
RR=R2DP(I1)
A11Z(KEY)=A11Z(KEY)+REAL(RR)*QFR1
330 CONTINUE
ELSE
DO 335 I1=1,LC
I=ISR(IC,I1)
INW1=KN(NUM1+I)
IF(INW1.EQ.0) GO TO 335
INZ1=IPZ(INW1)
KEY=MUZ(INZ1)
RR=RTHG(I1,I1)
A11Z(KEY)=A11Z(KEY)+REAL(RR)*QFR1
335 CONTINUE
ENDIF
340 CONTINUE
350 NUM1=NUM1+LL
NUM2=NUM2+8
360 CONTINUE
RETURN
END
|