1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
|
*DECK TRIPXX
SUBROUTINE TRIPXX (IR,MAXKN,NEL,LL4,VOL,MAT,XSGD,XX,YY,ZZ,DD,KN,
1 QFR,MUX,IPX,CYLIND,LC,T,TS,Q,QS,A11X)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Assembly of system matrices for a primal finite element method in 3-D.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IR first dimension for matrix SGD.
* MAXKN first dimension for matrix KN.
* NEL total number of finite elements.
* LL4 order of system matrices.
* MAT mixture index assigned to each element.
* VOL volume of each element.
* XX X-directed mesh spacings.
* YY Y-directed mesh spacings.
* ZZ Z-directed mesh spacings.
* DD values used with a cylindrical geometry.
* KN element-ordered unknown list.
* QFR element-ordered boundary conditions.
* XSGD nuclear properties, derivatives or first variations of
* nuclear properties per material mixture:
* XSGD(L,1): X-oriented diffusion coefficients;
* XSGD(L,2): Y-oriented diffusion coefficients;
* XSGD(L,3): Z-oriented diffusion coefficients;
* XSGD(L,4): removal macroscopic cross section.
* MUX X-oriented compressed storage mode indices.
* MUY Y-oriented compressed storage mode indices.
* MUZ Z-oriented compressed storage mode indices.
* IPX X-oriented permutation matrices.
* IPY Y-oriented permutation matrices.
* IPZ Z-oriented permutation matrices.
* CYLIND cylinderization flag (=.true. for cylindrical geometry).
* LC order of the unit matrices.
* T cartesian linear product vector.
* TS cylindrical linear product vector.
* Q cartesian stiffness matrix.
* QS cylindrical stiffness matrix.
*
*Parameters: output
* A11X X-oriented matrix corresponding to the divergence (i.e
* leakage) and removal terms (should be initialized by the
* calling program).
* A11Y Y-oriented matrix corresponding to the divergence (i.e
* leakage) and removal terms (should be initialized by the
* calling program).
* A11Z Z-oriented matrix corresponding to the divergence (i.e
* leakage) and removal terms (should be initialized by the
* calling program).
*
*-----------------------------------------------------------------------
*
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER IR,MAXKN,NEL,LL4,MAT(NEL),KN(MAXKN),MUX(LL4),IPX(LL4),LC
REAL VOL(NEL),XSGD(IR,4),XX(NEL),YY(NEL),ZZ(NEL),DD(NEL),
1 QFR(6*NEL),T(LC),TS(LC),Q(LC,LC),QS(LC,LC),A11X(*)
LOGICAL CYLIND
*----
* LOCAL VARIABLES
*----
DOUBLE PRECISION VAR1,VOL1,VOL2,VOL3,QQX,QQY,QQZ
COMMON /ELEM2/LL,LCC,IJ1(125),IJ2(125),IJ3(125),ISR(6,25),
1 Q3DP1(125,125),Q3DP2(125,125),Q3DP3(125,125),R3DP(125),
2 Q3DC1(125,125),Q3DC2(125,125),Q3DC3(125,125),R3DC(125),
3 R2DP(25),R2DC(25)
*----
* X-DIRECTED COUPLINGS.
*
* ASSEMBLY OF MATRIX A11X.
*----
CALL TRIPMA(LC,T,TS,Q,QS)
NUM1=0
NUM2=0
DO 90 K=1,NEL
L=MAT(K)
IF(L.EQ.0) GO TO 90
VOL0=VOL(K)
IF(VOL0.EQ.0.0) GO TO 80
DX=XX(K)
DY=YY(K)
DZ=ZZ(K)
VOL1=VOL0/(DX*DX)
VOL2=VOL0/(DY*DY)
VOL3=VOL0/(DZ*DZ)
DO 50 I=1,LL
IND1=KN(NUM1+I)
IF(IND1.EQ.0) GO TO 50
INX1=IPX(IND1)
KEY0=MUX(INX1)
IF(CYLIND) THEN
RR=(R3DP(I)+R3DC(I)*DX/DD(K))*VOL0
ELSE
RR=R3DP(I)*VOL0
ENDIF
A11X(KEY0)=A11X(KEY0)+RR*XSGD(L,4)
KEY0=KEY0-INX1
DO 40 J=1,LL
IND2=KN(NUM1+J)
IF(IND2.EQ.0) GO TO 40
INX2=IPX(IND2)
IF(INX2.EQ.INX1) THEN
IF(CYLIND) THEN
QQX=(Q3DP1(I,J)+Q3DC1(I,J)*DX/DD(K))*VOL1
QQY=(Q3DP2(I,J)+Q3DC2(I,J)*DX/DD(K))*VOL2
QQZ=(Q3DP3(I,J)+Q3DC3(I,J)*DX/DD(K))*VOL3
ELSE
QQX=Q3DP1(I,J)*VOL1
QQY=Q3DP2(I,J)*VOL2
QQZ=Q3DP3(I,J)*VOL3
ENDIF
KEY=KEY0+INX2
VAR1=QQX*XSGD(L,1)+QQY*XSGD(L,2)+QQZ*XSGD(L,3)
A11X(KEY)=REAL(A11X(KEY)+VAR1)
ELSE IF((INX2.LT.INX1).AND.(IJ2(I).EQ.IJ2(J)).AND.
1 (IJ3(I).EQ.IJ3(J))) THEN
IF(CYLIND) THEN
QQX=(Q3DP1(I,J)+Q3DC1(I,J)*DX/DD(K))*VOL1
ELSE
QQX=Q3DP1(I,J)*VOL1
ENDIF
KEY=KEY0+INX2
A11X(KEY)=REAL(A11X(KEY)+QQX*XSGD(L,1))
ENDIF
40 CONTINUE
50 CONTINUE
DO 70 IC=1,6
QFR1=QFR(NUM2+IC)
IF(QFR1.EQ.0.0) GO TO 70
DO 60 I1=1,LCC
I=ISR(IC,I1)
IND1=KN(NUM1+I)
IF(IND1.EQ.0) GO TO 60
INX1=IPX(IND1)
KEY=MUX(INX1)
IF(CYLIND) THEN
IF(IC.EQ.1) THEN
CRZ=-0.5*R2DP(I1)
ELSE IF(IC.EQ.2) THEN
CRZ=0.5*R2DP(I1)
ELSE
CRZ=R2DC(I1)
ENDIF
RR=(R2DP(I1)+CRZ*DX/DD(K))
ELSE
RR=R2DP(I1)
ENDIF
A11X(KEY)=A11X(KEY)+RR*QFR1
60 CONTINUE
70 CONTINUE
80 NUM1=NUM1+LL
NUM2=NUM2+6
90 CONTINUE
RETURN
END
*
SUBROUTINE TRIPXY (IR,MAXKN,NEL,LL4,VOL,MAT,XSGD,XX,YY,ZZ,DD,KN,
1 QFR,MUY,IPY,CYLIND,LC,T,TS,Q,QS,A11Y)
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER IR,MAXKN,NEL,LL4,MAT(NEL),KN(MAXKN),MUY(LL4),IPY(LL4),LC
REAL VOL(NEL),XSGD(IR,4),XX(NEL),YY(NEL),ZZ(NEL),DD(NEL),
1 QFR(6*NEL),T(LC),TS(LC),Q(LC,LC),QS(LC,LC),A11Y(*)
LOGICAL CYLIND
*----
* LOCAL VARIABLES
*----
DOUBLE PRECISION VAR1,VOL1,VOL2,VOL3,QQX,QQY,QQZ
COMMON /ELEM2/LL,LCC,IJ1(125),IJ2(125),IJ3(125),ISR(6,25),
1 Q3DP1(125,125),Q3DP2(125,125),Q3DP3(125,125),R3DP(125),
2 Q3DC1(125,125),Q3DC2(125,125),Q3DC3(125,125),R3DC(125),
3 R2DP(25),R2DC(25)
*----
* Y-DIRECTED COUPLINGS.
*
* ASSEMBLY OF MATRIX A11Y.
*----
CALL TRIPMA(LC,T,TS,Q,QS)
NUM1=0
NUM2=0
DO 180 K=1,NEL
L=MAT(K)
IF(L.EQ.0) GO TO 180
VOL0=VOL(K)
IF(VOL0.EQ.0.0) GO TO 170
DX=XX(K)
DY=YY(K)
DZ=ZZ(K)
VOL1=VOL0/(DX*DX)
VOL2=VOL0/(DY*DY)
VOL3=VOL0/(DZ*DZ)
DO 140 I=1,LL
IND1=KN(NUM1+I)
IF(IND1.EQ.0) GO TO 140
INY1=IPY(IND1)
KEY0=MUY(INY1)
IF(CYLIND) THEN
RR=(R3DP(I)+R3DC(I)*DX/DD(K))*VOL0
ELSE
RR=R3DP(I)*VOL0
ENDIF
A11Y(KEY0)=A11Y(KEY0)+RR*XSGD(L,4)
KEY0=KEY0-INY1
DO 130 J=1,LL
IND2=KN(NUM1+J)
IF(IND2.EQ.0) GO TO 130
INY2=IPY(IND2)
IF(INY2.EQ.INY1) THEN
IF(CYLIND) THEN
QQX=(Q3DP1(I,J)+Q3DC1(I,J)*DX/DD(K))*VOL1
QQY=(Q3DP2(I,J)+Q3DC2(I,J)*DX/DD(K))*VOL2
QQZ=(Q3DP3(I,J)+Q3DC3(I,J)*DX/DD(K))*VOL3
ELSE
QQX=Q3DP1(I,J)*VOL1
QQY=Q3DP2(I,J)*VOL2
QQZ=Q3DP3(I,J)*VOL3
ENDIF
KEY=KEY0+INY2
VAR1=QQX*XSGD(L,1)+QQY*XSGD(L,2)+QQZ*XSGD(L,3)
A11Y(KEY)=REAL(A11Y(KEY)+VAR1)
ELSE IF((INY2.LT.INY1).AND.(IJ1(I).EQ.IJ1(J)).AND.
1 (IJ3(I).EQ.IJ3(J))) THEN
IF(CYLIND) THEN
QQY=(Q3DP2(I,J)+Q3DC2(I,J)*DX/DD(K))*VOL2
ELSE
QQY=Q3DP2(I,J)*VOL2
ENDIF
KEY=KEY0+INY2
A11Y(KEY)=REAL(A11Y(KEY)+QQY*XSGD(L,2))
ENDIF
130 CONTINUE
140 CONTINUE
DO 160 IC=1,6
QFR1=QFR(NUM2+IC)
IF(QFR1.EQ.0.0) GO TO 160
DO 150 I1=1,LCC
I=ISR(IC,I1)
IND1=KN(NUM1+I)
IF(IND1.EQ.0) GO TO 150
INY1=IPY(IND1)
KEY=MUY(INY1)
IF(CYLIND) THEN
IF(IC.EQ.1) THEN
CRZ=-0.5*R2DP(I1)
ELSE IF(IC.EQ.2) THEN
CRZ=0.5*R2DP(I1)
ELSE
CRZ=R2DC(I1)
ENDIF
RR=(R2DP(I1)+DX*CRZ/DD(K))
ELSE
RR=R2DP(I1)
ENDIF
A11Y(KEY)=A11Y(KEY)+RR*QFR1
150 CONTINUE
160 CONTINUE
170 NUM1=NUM1+LL
NUM2=NUM2+6
180 CONTINUE
RETURN
END
*
SUBROUTINE TRIPXZ (IR,MAXKN,NEL,LL4,VOL,MAT,XSGD,XX,YY,ZZ,DD,KN,
1 QFR,MUZ,IPZ,CYLIND,LC,T,TS,Q,QS,A11Z)
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER IR,MAXKN,NEL,LL4,MAT(NEL),KN(MAXKN),MUZ(LL4),IPZ(LL4),LC
REAL VOL(NEL),XSGD(IR,4),XX(NEL),YY(NEL),ZZ(NEL),DD(NEL),
1 QFR(6*NEL),T(LC),TS(LC),Q(LC,LC),QS(LC,LC),A11Z(*)
LOGICAL CYLIND
*----
* LOCAL VARIABLES
*----
DOUBLE PRECISION VAR1,VOL1,VOL2,VOL3,QQX,QQY,QQZ
COMMON /ELEM2/LL,LCC,IJ1(125),IJ2(125),IJ3(125),ISR(6,25),
1 Q3DP1(125,125),Q3DP2(125,125),Q3DP3(125,125),R3DP(125),
2 Q3DC1(125,125),Q3DC2(125,125),Q3DC3(125,125),R3DC(125),
3 R2DP(25),R2DC(25)
*----
* Z-DIRECTED COUPLINGS.
*
* ASSEMBLY OF MATRIX A11Z.
*----
CALL TRIPMA(LC,T,TS,Q,QS)
NUM1=0
NUM2=0
DO 270 K=1,NEL
L=MAT(K)
IF(L.EQ.0) GO TO 270
VOL0=VOL(K)
IF(VOL0.EQ.0.0) GO TO 260
DX=XX(K)
DY=YY(K)
DZ=ZZ(K)
VOL1=VOL0/(DX*DX)
VOL2=VOL0/(DY*DY)
VOL3=VOL0/(DZ*DZ)
DO 230 I=1,LL
IND1=KN(NUM1+I)
IF(IND1.EQ.0) GO TO 230
INZ1=IPZ(IND1)
KEY0=MUZ(INZ1)
IF(CYLIND) THEN
RR=(R3DP(I)+R3DC(I)*DX/DD(K))*VOL0
ELSE
RR=R3DP(I)*VOL0
ENDIF
A11Z(KEY0)=A11Z(KEY0)+RR*XSGD(L,4)
KEY0=KEY0-INZ1
DO 220 J=1,LL
IND2=KN(NUM1+J)
IF(IND2.EQ.0) GO TO 220
INZ2=IPZ(IND2)
IF(INZ2.EQ.INZ1) THEN
IF(CYLIND) THEN
QQX=(Q3DP1(I,J)+Q3DC1(I,J)*DX/DD(K))*VOL1
QQY=(Q3DP2(I,J)+Q3DC2(I,J)*DX/DD(K))*VOL2
QQZ=(Q3DP3(I,J)+Q3DC3(I,J)*DX/DD(K))*VOL3
ELSE
QQX=Q3DP1(I,J)*VOL1
QQY=Q3DP2(I,J)*VOL2
QQZ=Q3DP3(I,J)*VOL3
ENDIF
KEY=KEY0+INZ2
VAR1=QQX*XSGD(L,1)+QQY*XSGD(L,2)+QQZ*XSGD(L,3)
A11Z(KEY)=REAL(A11Z(KEY)+VAR1)
ELSE IF((INZ2.LT.INZ1).AND.(IJ1(I).EQ.IJ1(J)).AND.
1 (IJ2(I).EQ.IJ2(J))) THEN
IF(CYLIND) THEN
QQZ=(Q3DP3(I,J)+Q3DC3(I,J)*DX/DD(K))*VOL3
ELSE
QQZ=Q3DP3(I,J)*VOL3
ENDIF
KEY=KEY0+INZ2
A11Z(KEY)=REAL(A11Z(KEY)+QQZ*XSGD(L,3))
ENDIF
220 CONTINUE
230 CONTINUE
DO 250 IC=1,6
QFR1=QFR(NUM2+IC)
IF(QFR1.EQ.0.0) GO TO 250
DO 240 I1=1,LCC
I=ISR(IC,I1)
IND1=KN(NUM1+I)
IF(IND1.EQ.0) GO TO 240
INZ1=IPZ(IND1)
KEY=MUZ(INZ1)
IF(CYLIND) THEN
IF(IC.EQ.1) THEN
CRZ=-0.5*R2DP(I1)
ELSE IF(IC.EQ.2) THEN
CRZ=0.5*R2DP(I1)
ELSE
CRZ=R2DC(I1)
ENDIF
RR=(R2DP(I1)+DX*CRZ/DD(K))
ELSE
RR=R2DP(I1)
ENDIF
A11Z(KEY)=A11Z(KEY)+RR*QFR1
240 CONTINUE
250 CONTINUE
260 NUM1=NUM1+LL
NUM2=NUM2+6
270 CONTINUE
RETURN
END
|