1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
|
*DECK TRINTR
SUBROUTINE TRINTR (ISPLH,IPTRK,LX,LI4,IHEX,MAT)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Numbering corresponding to a mesh centred finite difference for
* hexagonal geometry (each hexagon represented by 6 triangles).
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Benaboud
*
*Parameters: input
* ISPLH used to compute the number of triangles per hexagon
* (6*(ISPLH-1)**2).
* IPTRK L_TRACK pointer to the tracking information.
* LX number of elements.
* IHEX type of hexagonal boundary condition.
* MAT mixture index assigned to each element.
*
*Parameters: output
* LI4 total number of unknown (variational coefficients) per
* energy group per plan.
*
*-----------------------------------------------------------------------
*
USE GANLIB
*----
* SUBROUTINE ARGUMENTS
*----
TYPE(C_PTR) IPTRK
INTEGER ISPLH,LX,LI4,IHEX,MAT(LX)
*----
* LOCAL VARIABLES
*----
LOGICAL LPAIR
INTEGER IRO(180,2),NBL(20,2)
INTEGER, DIMENSION(:), ALLOCATABLE :: IW,IY,IPO,IXN,IDX,IDY
INTEGER, DIMENSION(:,:), ALLOCATABLE :: IC1,IC2
INTEGER, DIMENSION(:,:,:), ALLOCATABLE :: NIK
DATA NBL /3,3,5,7,7,5,7,9,11,11,9,7,9,11,13,15,15,13,11,9,
> 3,3,7,5,5,7,11,9,7,7,9,11,15,13,11,9,9,11,13,15/
DATA IRO /4,1,2,5,6,3, 13,6,7,1,2,20,14,15,8,9,3,4,21,22,16,
> 17,10,11,5,23,24,18,19,12, 28,17,18,8,9,1,2,39,29,30,19,20,
> 10,11,3,4,48,40,41,31,32,21,22,12,13,5,6,49,50,42,43,33,34,
> 23,24,14,15,7,51,52,44,45,35,36,25,26,16,53,54,46,47,37,38,
> 27, 49,34,35,21,22,10,11,1,2,64,50,51,36,37,23,24,12,13,3,
> 4,77,65,66,52,53,38,39,25,26,14,15,5,6,88,78,79,67,68,54,55,
> 40,41,27,28,16,17,7,8,89,90,80,81,69,70,56,57,42,43,29,30,18,
> 19,9,91,92,82,83,71,72,58,59,44,45,31,32,20,93,94,84,85,73,
> 74,60,61,46,47,33,95,96,86,87,75,76,62,63,48,
> 5,4,1,6,3,2, 21,20,14,13,6,23,22,16,15,8,7,1,24,18,17,10,9,
> 3,2,19,12,11,5,4, 49,48,40,39,29,28,17,51,50,42,41,31,30,19,
> 18,8,53,52,44,43,33,32,21,20,10,9,1,54,46,45,35,34,23,22,12,
> 11,3,2,47,37,36,25,24,14,13,5,4,38,27,26,16,15,7,6,
> 89,88,78,77,65,64,50,49,34,91,90,80,79,67,66,52,51,36,35,21,
> 93,92,82,81,69,68,54,53,38,37,23,22,10,95,94,84,83,71,70,56,
> 55,40,39,25,24,12,11,1,96,86,85,73,72,58,57,42,41,27,26,14,
> 13,3,2,87,75,74,60,59,44,43,29,28,16,15,5,4,76,62,61,46,45,
> 31,30,18,17,7,6,63,48,47,33,32,20,19,9,8/
*----
* SCRATCH STORAGE ALLOCATION
*----
ALLOCATE(IC1(3,2*LX),IC2(3,2*LX*(ISPLH-1)))
ALLOCATE(NIK(3,6*(ISPLH-1)**2,LX))
*
NBE = 0
NC = INT((SQRT(REAL((4*LX-1)/3))+1.)/2.)
L1 = 3*NC - 2
COURS2 = REAL(L1)/2.
LPAIR = (AINT(COURS2).EQ.COURS2)
IF(ISPLH.LE.3) ISAU = 2*(ISPLH-2)
IF(ISPLH.GE.4) ISAU = 6*(ISPLH-3)
ALLOCATE(IW(3*L1),IY(L1))
IW(1) = 2+3*(NC-1)*(NC-2)
DO 10 I = 1,L1
IF(I.LT.L1) IW(I+1) = 2+3*NC*(NC-1)-I
IF(I.LE.NC) IW(I+L1) = 3+(3*NC-5)*(NC-1)-I
IF(I.GT.NC) IW(I+L1) = 2+3*NC*(NC-1)-I+NC
IF(I.LE.2*NC-1) IW(I+2*L1) = 3+(3*NC-4)*(NC-1)-I
IF(I.GT.2*NC-1) IW(I+2*L1) = 2+3*NC*(NC-1)-I+2*NC-1
10 CONTINUE
IF(LPAIR) THEN
DO 20 I = 1,L1/2
IF(I.LE.NC) IY(I) = 1+2*(I-1)
IF(I.GT.NC) IY(I) = IY(NC)
20 CONTINUE
KEL = 1
DO 30 I = L1,L1/2,-1
IF(I.GE.(L1-NC-1)) IY(I) = IY(KEL)
IF(I.LT.(L1-NC-1)) IY(I) = IY(NC)
KEL = KEL + 1
30 CONTINUE
ELSE
DO 40 I = 1,(L1+1)/2
IF(I.LE.NC) IY(I) = 1+2*(I-1)
IF(I.GT.NC) IY(I) = IY(NC)
40 CONTINUE
KEL = 1
DO 50 I = L1,(L1-1)/2,-1
IF(I.GE.(L1-NC-1)) IY(I) = IY(KEL)
IF(I.LT.(L1-NC-1)) IY(I) = IY(NC)
KEL = KEL + 1
50 CONTINUE
ENDIF
ICAS = 3
DO 90 K = 1,ICAS
KEL = 1
DO 80 I = 1,L1
IPAR = IW(I+(K-1)*L1)
NPAR = IPAR
IC1(K,KEL) = NPAR
KEL = KEL + 1
IF(I.GT.(2*NC-1)) GO TO 70
60 NPAR = ABS(NEIGHB(NPAR,K+1,IHEX,LX,P))
IF(NPAR.GT.LX) THEN
IF(I.LT.NC.OR.I.GT.(2*NC-1)) GO TO 80
IF(I.GE.NC.AND.I.LE.(2*NC-1)) NPAR = IPAR
ENDIF
IC1(K,KEL) = NPAR
KEL = KEL + 1
70 NPAR = ABS(NEIGHB(NPAR,K+2,IHEX,LX,P))
IF(NPAR.GT.LX) GO TO 80
IC1(K,KEL) = NPAR
KEL = KEL + 1
GO TO 60
80 CONTINUE
90 CONTINUE
DO 140 K=1,ICAS
IF(ISPLH.EQ.2) THEN
DO 100 JX = 1,2*LX
IC2(K,JX) = IC1(K,JX)
100 CONTINUE
ELSE
JEL = 1
IEL = 1
KEL = 1
MEL = 0
110 IF(IEL.LE.2*LX) THEN
IF(IC1(K,IEL).EQ.MEL) NBE = IY(KEL-1)
IF(IC1(K,IEL).EQ.IW(KEL+(K-1)*L1)) THEN
NBE = IY(KEL)
KEL = KEL + 1
ENDIF
MEL = IC1(K,IEL)
IFOIS = 0
ISAUV = IEL
120 DO 130 LDB = 1,NBE
IC2(K,JEL) = IC1(K,IEL)
JEL = JEL + 1
IEL = IEL + 1
130 CONTINUE
IFOIS = IFOIS + 1
IF(IFOIS.LT.(ISPLH-1)) THEN
IEL = ISAUV
GO TO 120
ENDIF
GO TO 110
ENDIF
ENDIF
140 CONTINUE
DO 152 K=1,ICAS
DO 151 I=1,LX
DO 150 J=1,6*(ISPLH-1)**2
NIK(K,J,I) = 0
150 CONTINUE
151 CONTINUE
152 CONTINUE
ALLOCATE(IPO(LX))
DO 200 K=1,ICAS
DO 160 KK=1,LX
IPO(KK) = 1
160 CONTINUE
IA = 1
IX = 1
ILI = 1
ICOMPT = 1
170 IEL = 1
JCL = 1
IVAL = IC2(K,IX)
180 IF(MAT(IC2(K,IX)).EQ.0) THEN
IX = IX + 1
IEL = IEL + 1
JCL = JCL + 1
IF(JCL.GT.2) JCL = 1
ELSE
IF(ILI+ISAU.GT.20) CALL XABORT('TRINTR: NBL OVERFLOW.')
IDEB = IPO(IC2(K,IX))
IFIN = IPO(IC2(K,IX)) + NBL(ILI+ISAU,JCL) - 1
DO 190 J=IDEB,IFIN
NIK(K,J,IC2(K,IX)) = ICOMPT
ICOMPT = ICOMPT + 1
190 CONTINUE
IPO(IC2(K,IX)) = J
IX = IX + 1
IEL = IEL + 1
JCL = JCL + 1
IF(JCL.GT.2) JCL = 1
ENDIF
IF(IEL.LE.IY(IA)) GO TO 180
IF(IX.GT.2*LX*(ISPLH-1)) GO TO 200
IF(IC2(K,IX).NE.IVAL) IA = IA + 1
ILI = ILI + 1
IF(ILI.LE.(ISPLH-1)) GO TO 170
IF((ILI.GT.(ISPLH-1).AND.ILI.LE.2*(ISPLH-1)).AND.
> (IVAL.EQ.IC2(K,IX))) GO TO 170
ILI = 1
IF(IA.GT.(1+2*(NC-1))) ILI = ISPLH
IF(IX.LE.2*LX*(ISPLH-1)) GO TO 170
200 CONTINUE
LI4 = ICOMPT - 1
DEALLOCATE(IPO,IY,IW)
ALLOCATE(IXN(LI4),IDX(LI4),IDY(LI4))
KEL = 0
ICR = ISAU*(1+2*(ISPLH-2))
DO 220 I = 1, LX
IF(MAT(I).EQ.0) GO TO 220
DO 210 J=1,6*(ISPLH-1)**2
KEL = KEL + 1
IXN(KEL) = NIK(1,J,I)
IDX(NIK(1,J,I))=NIK(2,IRO(J+ICR,1),I)
IDY(NIK(1,J,I))=NIK(3,IRO(J+ICR,2),I)
210 CONTINUE
220 CONTINUE
*
CALL LCMPUT(IPTRK,'IKN',LI4,1,IXN)
CALL LCMPUT(IPTRK,'ILX',LI4,1,IDX)
CALL LCMPUT(IPTRK,'ILY',LI4,1,IDY)
DEALLOCATE(IDY,IDX,IXN)
*----
* SCRATCH STORAGE DEALLOCATION
*----
DEALLOCATE(NIK,IC2,IC1)
RETURN
END
|