1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
|
*DECK TRIMXX
SUBROUTINE TRIMXX(IR,CYLIND,IELEM,IDIM,NEL,LL4,VOL,MAT,SGD,XSGD,
1 XX,YY,ZZ,DD,KN,QFR,MUX,IPX,IPR,A11X)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Assembly of system matrices for mesh centered finite differences or
* nodal collocation method. Note: system matrices should be initialized
* by the calling program.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IR first dimension of matrices SGD and XSGD.
* CYLIND cylindrical geometry flag (set with CYLIND =.true.).
* IELEM degree of the polynomial basis: =1 (linear/finite
* differences); =2 (parabolic); =3 (cubic); =4 (quartic).
* IDIM number of dimensions (1, 2 or 3).
* NEL total number of finite elements.
* ll4 order of system matrices.
* VOL volume of each element.
* MAT mixture index assigned to each element.
* SGD nuclear properties by material mixture:
* SGD(L,1) X-oriented diffusion coefficients;
* SGD(L,2) Y-oriented diffusion coefficients;
* SGD(L,3) Z-oriented diffusion coefficients;
* SGD(L,4) removal macroscopic cross section.
* XSGD derivative of nuclear properties if IPR=1;
* variation of nuclear properties if IPR=2 or IPR=3.
* Note that XSGD=SGD if IPR=0.
* XX X-directed mesh spacings.
* YY Y-directed mesh spacings.
* ZZ Z-directed mesh spacings.
* DD used with cylindrical geometry.
* KN element-ordered unknown list:
* .GT.0: neighbour index;
* =-1: void/albedo boundary condition;
* =-2: reflection boundary condition;
* =-3: ZERO flux boundary condition;
* =-4: SYME boundary condition (axial symmetry).
* QFR element-ordered boundary conditions.
* MUX X-directed compressed storage mode indices.
* MUY Y-directed compressed storage mode indices.
* MUZ Z-directed compressed storage mode indices.
* IPX permutation matrices.
* IPY Y-directed permutation matrices.
* IPZ Z-directed permutation matrices.
* IPR type of assembly matrix calculation:
* =0: compute the system matrices;
* =1: compute the derivative of system matrices;
* =2 or =3: compute the variation of system matrices.
*
*Parameters: output
* A11X X-directed matrices corresponding to the divergence (i.e
* leakage) and removal terms. Dimensionned to MUX(LL4).
* A11Y Y-directed matrices corresponding to the divergence (i.e
* leakage) and removal terms. Dimensionned to MUY(LL4).
* A11Z Z-directed matrices corresponding to the divergence (i.e
* leakage) and removal terms. Dimensionned to MUZ(LL4).
*
*-----------------------------------------------------------------------
*
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER IR,IELEM,IDIM,NEL,LL4,MAT(NEL),KN(6*NEL),MUX(LL4),
1 IPX(LL4),IPR
REAL VOL(NEL),SGD(IR,4),XSGD(IR,4),XX(NEL),YY(NEL),ZZ(NEL),
1 DD(NEL),QFR(6*NEL),A11X(*)
LOGICAL CYLIND
*----
* LOCAL VARIABLES
*----
LOGICAL LOGIC
DOUBLE PRECISION RLL,R,S,QQ,PAIR,A1(6),VAR1
INTEGER, DIMENSION(:), ALLOCATABLE :: IGAR
*----
* STATEMENT FUNCTION
*----
IORD(J,K,L,LL,IEL,IW)=(IEL*L+K)*LL*IEL+(1+IEL*(IW-1))+J
*----
* X-ORIENTED COUPLINGS. ASSEMBLY OF MATRIX A11X
*----
ALLOCATE(IGAR(NEL))
LL=0
DO 10 K=1,NEL
IF(MAT(K).EQ.0) GO TO 10
LL=LL+1
IGAR(K)=LL
10 CONTINUE
RLL=REAL(IELEM*(IELEM+1))
NUM1=0
DO 70 K=1,NEL
L=MAT(K)
IF(L.EQ.0) GO TO 70
VOL0=VOL(K)
IF(VOL0.EQ.0.0) GO TO 60
DX=XX(K)
DY=YY(K)
DZ=ZZ(K)
*
IF(IPR.EQ.0) THEN
CALL TRICO (IELEM,IR,NEL,K,VOL0,MAT,XSGD(1,1),XX,YY,ZZ,DD,
1 KN(NUM1+1),QFR(NUM1+1),CYLIND,A1)
ELSE IF(IPR.GE.1) THEN
CALL TRIDCO (IELEM,IR,NEL,K,VOL0,MAT,SGD(1,1),XSGD(1,1),XX,YY,
1 ZZ,DD,KN(NUM1+1),QFR(NUM1+1),CYLIND,IPR,A1)
ENDIF
KK1=KN(NUM1+1)
KK2=KN(NUM1+2)
IF(KK1.EQ.-4) KK1=KK2
IF(KK2.EQ.-4) KK2=KK1
*
IF(IELEM.EQ.1) THEN
IND1=IGAR(K)
INX1=IPX(IND1)
KEY0=MUX(INX1)-INX1
IF(KK1.GT.0) THEN
INX2=IPX(IGAR(KK1))
IF(INX2.LT.INX1) THEN
KEY=KEY0+INX2
A11X(KEY)=A11X(KEY)-REAL(A1(1))
ENDIF
ENDIF
IF(KK2.GT.0) THEN
INX2=IPX(IGAR(KK2))
IF(INX2.LT.INX1) THEN
KEY=KEY0+INX2
A11X(KEY)=A11X(KEY)-REAL(A1(2))
ENDIF
ENDIF
KEY=KEY0+INX1
VAR1=A1(1)+A1(2)+A1(3)+A1(4)+A1(5)+A1(6)
A11X(KEY)=A11X(KEY)+REAL(VAR1)+XSGD(L,4)*VOL0
ELSE
DO 55 I3=0,IELEM-1
DO 50 I2=0,IELEM-1
DO 40 I1=0,IELEM-1
IND1=IORD(I1,I2,I3,LL,IELEM,IGAR(K))
INX1=IPX(IND1)
KEY0=MUX(INX1)-INX1
QQ=SQRT(REAL(2*I1+1))*(RLL-REAL(I1*(I1+1)))/RLL
IF(KK1.GT.0) THEN
PAIR=(-1.0D0)**I1
DO 20 I0=0,IELEM-1
LOGIC=(KN((IGAR(KK1)-1)*6+1).NE.-4).OR.(MOD(I0+1,2).NE.0)
INX2=IPX(IORD(I0,I2,I3,LL,IELEM,IGAR(KK1)))
IF((INX2.LT.INX1).AND.LOGIC) THEN
KEY=KEY0+INX2
R=REAL(I0*(I0+1))
S=SQRT(REAL(2*I0+1))
VAR1=0.5D0*QQ*PAIR*S*(RLL-R)*A1(1)
A11X(KEY)=A11X(KEY)-REAL(VAR1)
ENDIF
20 CONTINUE
ENDIF
IF(KK2.GT.0) THEN
DO 25 I0=0,IELEM-1
INX2=IPX(IORD(I0,I2,I3,LL,IELEM,IGAR(KK2)))
IF(INX2.LT.INX1) THEN
PAIR=(-1.0D0)**I0
IF(KN(NUM1+2).EQ.-4) PAIR=1.0D0
KEY=KEY0+INX2
R=REAL(I0*(I0+1))
S=SQRT(REAL(2*I0+1))
VAR1=0.5D0*QQ*PAIR*S*(RLL-R)*A1(2)
A11X(KEY)=A11X(KEY)-REAL(VAR1)
ENDIF
25 CONTINUE
ENDIF
KEY=KEY0+INX1-I1
DO 30 I0=0,I1
R=REAL(I0*(I0+1))
S=SQRT(REAL(2*I0+1))
PAIR=1.0D0+(-1.0D0)**(I0+I1)
VAR1=QQ*(PAIR*S*R*XSGD(L,1)*VOL0/(DX*DX)+0.5D0*S*(RLL-R)*
1 ((-1.0D0)**(I0+I1)*A1(1)+A1(2)))
A11X(KEY+I0)=A11X(KEY+I0)+REAL(VAR1)
30 CONTINUE
*
KEY=KEY0+INX1
R=REAL(I2*(I2+1))
QQ=REAL(2*I2+1)*(RLL-R)/RLL
VAR1=QQ*(2.0D0*R*XSGD(L,2)*VOL0/(DY*DY)+0.5D0*(RLL-R)*
1 (A1(3)+A1(4)))
A11X(KEY)=A11X(KEY)+REAL(VAR1)
*
R=REAL(I3*(I3+1))
QQ=REAL(2*I3+1)*(RLL-R)/RLL
VAR1=QQ*(2.0D0*R*XSGD(L,3)*VOL0/(DZ*DZ)+0.5D0*(RLL-R)*
1 (A1(5)+A1(6)))+XSGD(L,4)*VOL0
A11X(KEY)=A11X(KEY)+REAL(VAR1)
*
40 CONTINUE
IF((IDIM.EQ.1).AND.(I2.EQ.0)) GO TO 60
IF((IDIM.EQ.2).AND.(I2.EQ.IELEM-1)) GO TO 60
50 CONTINUE
55 CONTINUE
ENDIF
60 NUM1=NUM1+6
70 CONTINUE
DEALLOCATE(IGAR)
RETURN
END
*
SUBROUTINE TRIMXY(IR,CYLIND,IELEM,IDIM,NEL,LL4,VOL,MAT,SGD,XSGD,
1 XX,YY,ZZ,DD,KN,QFR,MUY,IPY,IPR,A11Y)
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER IR,IELEM,IDIM,NEL,LL4,MAT(NEL),KN(6*NEL),MUY(LL4),
1 IPY(LL4),IPR
REAL VOL(NEL),SGD(IR,4),XSGD(IR,4),XX(NEL),YY(NEL),ZZ(NEL),
1 DD(NEL),QFR(6*NEL),A11Y(*)
LOGICAL CYLIND
*----
* LOCAL VARIABLES
*----
LOGICAL LOGIC
DOUBLE PRECISION RLL,R,S,QQ,PAIR,A1(6),VAR1
INTEGER, DIMENSION(:), ALLOCATABLE :: IGAR
*----
* STATEMENT FUNCTION
*----
IORD(J,K,L,LL,IEL,IW)=(IEL*L+K)*LL*IEL+(1+IEL*(IW-1))+J
*----
* Y-ORIENTED COUPLINGS. ASSEMBLY OF MATRIX A11Y
*----
ALLOCATE(IGAR(NEL))
LL=0
DO 80 K=1,NEL
IF(MAT(K).EQ.0) GO TO 80
LL=LL+1
IGAR(K)=LL
80 CONTINUE
RLL=REAL(IELEM*(IELEM+1))
NUM1=0
DO 140 K=1,NEL
L=MAT(K)
IF(L.EQ.0) GO TO 140
VOL0=VOL(K)
IF(VOL0.EQ.0.0) GO TO 130
DX=XX(K)
DY=YY(K)
DZ=ZZ(K)
*
IF(IPR.EQ.0) THEN
CALL TRICO (IELEM,IR,NEL,K,VOL0,MAT,XSGD(1,1),XX,YY,ZZ,DD,
1 KN(NUM1+1),QFR(NUM1+1),CYLIND,A1)
ELSE IF(IPR.GE.1) THEN
CALL TRIDCO (IELEM,IR,NEL,K,VOL0,MAT,SGD(1,1),XSGD(1,1),XX,YY,
1 ZZ,DD,KN(NUM1+1),QFR(NUM1+1),CYLIND,IPR,A1)
ENDIF
KK3=KN(NUM1+3)
KK4=KN(NUM1+4)
IF(KK3.EQ.-4) KK3=KK4
IF(KK4.EQ.-4) KK4=KK3
*
IF(IELEM.EQ.1) THEN
INY1=IPY(IGAR(K))
KEY0=MUY(INY1)-INY1
IF(KK3.GT.0) THEN
INY2=IPY(IGAR(KK3))
IF(INY2.LT.INY1) THEN
KEY=KEY0+INY2
A11Y(KEY)=A11Y(KEY)-REAL(A1(3))
ENDIF
ENDIF
IF(KK4.GT.0) THEN
INY2=IPY(IGAR(KK4))
IF(INY2.LT.INY1) THEN
KEY=KEY0+INY2
A11Y(KEY)=A11Y(KEY)-REAL(A1(4))
ENDIF
ENDIF
KEY=KEY0+INY1
VAR1=A1(1)+A1(2)+A1(3)+A1(4)+A1(5)+A1(6)
A11Y(KEY)=A11Y(KEY)+REAL(VAR1)+XSGD(L,4)*VOL0
ELSE
DO 125 I3=0,IELEM-1
DO 120 I2=0,IELEM-1
DO 110 I1=0,IELEM-1
INY1=IPY(IORD(I2,I1,I3,LL,IELEM,IGAR(K)))
KEY0=MUY(INY1)-INY1
QQ=SQRT(REAL(2*I1+1))*(RLL-REAL(I1*(I1+1)))/RLL
IF(KK3.GT.0) THEN
PAIR=(-1.0D0)**I1
DO 90 I0=0,IELEM-1
LOGIC=(KN((IGAR(KK3)-1)*6+3).NE.-4).OR.(MOD(I0+1,2).NE.0)
INY2=IPY(IORD(I2,I0,I3,LL,IELEM,IGAR(KK3)))
IF((INY2.LT.INY1).AND.LOGIC) THEN
KEY=KEY0+INY2
R=REAL(I0*(I0+1))
S=SQRT(REAL(2*I0+1))
VAR1=0.5D0*QQ*PAIR*S*(RLL-R)*A1(3)
A11Y(KEY)=A11Y(KEY)-REAL(VAR1)
ENDIF
90 CONTINUE
ENDIF
IF(KK4.GT.0) THEN
DO 95 I0=0,IELEM-1
INY2=IPY(IORD(I2,I0,I3,LL,IELEM,IGAR(KK4)))
IF(INY2.LT.INY1) THEN
PAIR=(-1.0D0)**I0
IF(KN(NUM1+4).EQ.-4) PAIR=1.0D0
KEY=KEY0+INY2
R=REAL(I0*(I0+1))
S=SQRT(REAL(2*I0+1))
VAR1=0.5D0*QQ*PAIR*S*(RLL-R)*A1(4)
A11Y(KEY)=A11Y(KEY)-REAL(VAR1)
ENDIF
95 CONTINUE
ENDIF
KEY=KEY0+INY1-I1
DO 100 I0=0,I1
R=REAL(I0*(I0+1))
S=SQRT(REAL(2*I0+1))
PAIR=1.0D0+(-1.0D0)**(I0+I1)
VAR1=QQ*(PAIR*S*R*XSGD(L,2)*VOL0/(DY*DY)+0.5D0*S*(RLL-R)*
1 ((-1.0D0)**(I0+I1)*A1(3)+A1(4)))
A11Y(KEY+I0)=A11Y(KEY+I0)+REAL(VAR1)
100 CONTINUE
*
KEY=KEY0+INY1
R=REAL(I2*(I2+1))
QQ=REAL(2*I2+1)*(RLL-R)/RLL
VAR1=QQ*(2.0D0*R*XSGD(L,1)*VOL0/(DX*DX)+0.5D0*(RLL-R)*
1 (A1(1)+A1(2)))
A11Y(KEY)=A11Y(KEY)+REAL(VAR1)
*
R=REAL(I3*(I3+1))
QQ=REAL(2*I3+1)*(RLL-R)/RLL
VAR1=QQ*(2.0D0*R*XSGD(L,3)*VOL0/(DZ*DZ)+0.5D0*(RLL-R)*
1 (A1(5)+A1(6)))+XSGD(L,4)*VOL0
A11Y(KEY)=A11Y(KEY)+REAL(VAR1)
*
110 CONTINUE
IF((IDIM.EQ.2).AND.(I2.EQ.IELEM-1)) GO TO 130
120 CONTINUE
125 CONTINUE
ENDIF
130 NUM1=NUM1+6
140 CONTINUE
DEALLOCATE(IGAR)
RETURN
END
*
SUBROUTINE TRIMXZ(IR,CYLIND,IELEM,NEL,LL4,VOL,MAT,SGD,XSGD,XX,YY,
1 ZZ,DD,KN,QFR,MUZ,IPZ,IPR,A11Z)
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER IR,IELEM,NEL,LL4,MAT(NEL),KN(6*NEL),MUZ(LL4),IPZ(LL4),IPR
REAL VOL(NEL),SGD(IR,4),XSGD(IR,4),XX(NEL),YY(NEL),ZZ(NEL),
1 DD(NEL),QFR(6*NEL),A11Z(*)
LOGICAL CYLIND
*----
* LOCAL VARIABLES
*----
LOGICAL LOGIC
DOUBLE PRECISION RLL,R,S,QQ,PAIR,A1(6),VAR1
INTEGER, DIMENSION(:), ALLOCATABLE :: IGAR
*----
* STATEMENT FUNCTION
*----
IORD(J,K,L,LL,IEL,IW)=(IEL*L+K)*LL*IEL+(1+IEL*(IW-1))+J
*----
* Z-ORIENTED COUPLINGS. ASSEMBLY OF MATRIX A11Z
*----
ALLOCATE(IGAR(NEL))
LL=0
DO 150 K=1,NEL
IF(MAT(K).EQ.0) GO TO 150
LL=LL+1
IGAR(K)=LL
150 CONTINUE
RLL=REAL(IELEM*(IELEM+1))
NUM1=0
DO 210 K=1,NEL
L=MAT(K)
IF(L.EQ.0) GO TO 210
VOL0=VOL(K)
IF(VOL0.EQ.0.0) GO TO 200
DX=XX(K)
DY=YY(K)
DZ=ZZ(K)
*
IF(IPR.EQ.0) THEN
CALL TRICO (IELEM,IR,NEL,K,VOL0,MAT,XSGD(1,1),XX,YY,ZZ,DD,
1 KN(NUM1+1),QFR(NUM1+1),CYLIND,A1)
ELSE IF(IPR.GE.1) THEN
CALL TRIDCO (IELEM,IR,NEL,K,VOL0,MAT,SGD(1,1),XSGD(1,1),XX,YY,
1 ZZ,DD,KN(NUM1+1),QFR(NUM1+1),CYLIND,IPR,A1)
ENDIF
KK5=KN(NUM1+5)
KK6=KN(NUM1+6)
IF(KK5.EQ.-4) KK5=KK6
IF(KK6.EQ.-4) KK6=KK5
*
IF(IELEM.EQ.1) THEN
INZ1=IPZ(IGAR(K))
KEY0=MUZ(INZ1)-INZ1
IF(KK5.GT.0) THEN
INZ2=IPZ(IGAR(KK5))
IF(INZ2.LT.INZ1) THEN
KEY=KEY0+INZ2
A11Z(KEY)=A11Z(KEY)-REAL(A1(5))
ENDIF
ENDIF
IF(KK6.GT.0) THEN
INZ2=IPZ(IGAR(KK6))
IF(INZ2.LT.INZ1) THEN
KEY=KEY0+INZ2
A11Z(KEY)=A11Z(KEY)-REAL(A1(6))
ENDIF
ENDIF
KEY=KEY0+INZ1
VAR1=A1(1)+A1(2)+A1(3)+A1(4)+A1(5)+A1(6)
A11Z(KEY)=A11Z(KEY)+REAL(VAR1)+XSGD(L,4)*VOL0
ELSE
DO 192 I3=0,IELEM-1
DO 191 I2=0,IELEM-1
DO 190 I1=0,IELEM-1
INZ1=IPZ(IORD(I2,I3,I1,LL,IELEM,IGAR(K)))
KEY0=MUZ(INZ1)-INZ1
QQ=SQRT(REAL(2*I1+1))*(RLL-REAL(I1*(I1+1)))/RLL
IF(KK5.GT.0) THEN
PAIR=(-1.0D0)**I1
DO 160 I0=0,IELEM-1
LOGIC=(KN((IGAR(KK5)-1)*6+5).NE.-4).OR.(MOD(I0+1,2).NE.0)
INZ2=IPZ(IORD(I2,I3,I0,LL,IELEM,IGAR(KK5)))
IF((INZ2.LT.INZ1).AND.LOGIC) THEN
KEY=KEY0+INZ2
R=REAL(I0*(I0+1))
S=SQRT(REAL(2*I0+1))
VAR1=0.5D0*QQ*PAIR*S*(RLL-R)*A1(5)
A11Z(KEY)=A11Z(KEY)-REAL(VAR1)
ENDIF
160 CONTINUE
ENDIF
IF(KK6.GT.0) THEN
DO 165 I0=0,IELEM-1
INZ2=IPZ(IORD(I2,I3,I0,LL,IELEM,IGAR(KK6)))
IF(INZ2.LT.INZ1) THEN
PAIR=(-1.0D0)**I0
IF(KN(NUM1+6).EQ.-4) PAIR=1.0D0
KEY=KEY0+INZ2
R=REAL(I0*(I0+1))
S=SQRT(REAL(2*I0+1))
VAR1=0.5D0*QQ*PAIR*S*(RLL-R)*A1(6)
A11Z(KEY)=A11Z(KEY)-REAL(VAR1)
ENDIF
165 CONTINUE
ENDIF
KEY=KEY0+INZ1-I1
DO 170 I0=0,I1
R=REAL(I0*(I0+1))
S=SQRT(REAL(2*I0+1))
PAIR=1.0D0+(-1.0D0)**(I0+I1)
VAR1=QQ*(PAIR*S*R*XSGD(L,3)*VOL0/(DZ*DZ)+0.5D0*S*(RLL-R)*
1 ((-1.0D0)**(I0+I1)*A1(5)+A1(6)))
A11Z(KEY+I0)=A11Z(KEY+I0)+REAL(VAR1)
170 CONTINUE
*
KEY=KEY0+INZ1
R=REAL(I2*(I2+1))
QQ=REAL(2*I2+1)*(RLL-R)/RLL
VAR1=QQ*(2.0D0*R*XSGD(L,1)*VOL0/(DX*DX)+0.5D0*(RLL-R)*
1 (A1(1)+A1(2)))
A11Z(KEY)=A11Z(KEY)+REAL(VAR1)
*
R=REAL(I3*(I3+1))
QQ=REAL(2*I3+1)*(RLL-R)/RLL
VAR1=QQ*(2.0D0*R*XSGD(L,2)*VOL0/(DY*DY)+0.5D0*(RLL-R)*
1 (A1(3)+A1(4)))+XSGD(L,4)*VOL0
A11Z(KEY)=A11Z(KEY)+REAL(VAR1)
*
190 CONTINUE
191 CONTINUE
192 CONTINUE
ENDIF
200 NUM1=NUM1+6
210 CONTINUE
DEALLOCATE(IGAR)
RETURN
END
|