1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
|
*DECK TRIMWW
SUBROUTINE TRIMWW(IR,NEL,LL4,VOL,MAT,SGD,XSGD,SIDE,ZZ,KN,QFR,MUW,
1 IPW,IPR,A11W)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Assembly of system matrices for a mesh centered finite difference
* discretization in hexagonal geometry (complete hexagons).
* Note: system matrices should be initialized by the calling program.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Benaboud
*
*Parameters: input
* IR first dimension of matrix SGD.
* NEL total number of finite elements.
* ll4 order of system matrices.
* VOL volume of each element.
* MAT mixture index assigned to each element.
* SGD nuclear properties per material mixtures:
* SGD(L,1)= W-, X-, and Y-oriented diffusion coefficients;
* SGD(L,3)= Z-oriented diffusion coefficients;
* SGD(L,4)= removal macroscopic cross section.
* XSGD nuclear properties (IPR=0), derivatives (IPR=1) or first
* variations (IPR=2 or 3) of nuclear properties per material
* mixture.
* SIDE side of an hexagon.
* ZZ Z-directed mesh spacings.
* KN element-ordered unknown list.
* QFR element-ordered boundary conditions.
* MUW W-oriented compressed storage mode indices.
* MUX X-oriented compressed storage mode indices.
* MUY Y-oriented compressed storage mode indices.
* MUZ Z-oriented compressed storage mode indices.
* IPW W-oriented permutation matrices.
* IPX X-oriented permutation matrices.
* IPY Y-oriented permutation matrices.
* IPZ Z-oriented permutation matrices.
* IPR type of assembly:
* =0: compute the system matrices;
* =1: compute the derivative of system matrices;
* =2 or =3: compute the variation of system matrices.
*
*Parameters: output
* A11W W-oriented matrices corresponding to the divergence (i.e
* leakage) and removal terms. Dimensionned to MUW(LL4).
* A11X X-oriented matrices corresponding to the divergence (i.e
* leakage) and removal terms. Dimensionned to MUX(LL4).
* A11Y Y-oriented matrices corresponding to the divergence (i.e
* leakage) and removal terms. Dimensionned to MUY(LL4).
* A11Z Z-oriented matrices corresponding to the divergence (i.e
* leakage) and removal terms. Dimensionned to MUZ(LL4).
*
*-----------------------------------------------------------------------
*
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER IR,NEL,LL4,MAT(NEL),KN(8*NEL),MUW(LL4),IPW(LL4),IPR
REAL VOL(NEL),SGD(IR,4),XSGD(IR,4),SIDE,ZZ(NEL),QFR(8*NEL),
1 A11W(*)
*----
* LOCAL VARIABLES
*----
DOUBLE PRECISION A1(8),VAR1
INTEGER, DIMENSION(:), ALLOCATABLE :: IGAR
*----
* ASSEMBLY OF MATRIX A11W
*----
ALLOCATE(IGAR(LL4))
LL=0
DO 10 K=1,NEL
IF(MAT(K).LE.0) GO TO 10
LL=LL+1
IGAR(LL)=K
10 CONTINUE
NUM1=0
KEL=0
DO 70 K=1,NEL
L=MAT(K)
IF(L.EQ.0) GO TO 70
VOL0=VOL(K)
IF(VOL0.EQ.0.0) GO TO 60
KEL=KEL+1
*
CALL TRIHCO (IR,K,NEL,VOL0,MAT,SGD(1,1),XSGD(1,1),SIDE,ZZ,
1 KN(NUM1+1),QFR(NUM1+1),IGAR,IPR,A1)
KK1=KN(NUM1+6)
KK2=KN(NUM1+3)
*
INW1=IPW(KEL)
KEY0=MUW(INW1)-INW1
IF(KK1.GT.0) THEN
INW2=IPW(KK1)
IF(INW2.LT.INW1) THEN
KEY=KEY0+INW2
A11W(KEY)=A11W(KEY)-REAL(A1(6))
ENDIF
ENDIF
IF(KK2.GT.0) THEN
INW2=IPW(KK2)
IF(INW2.LT.INW1) THEN
KEY=KEY0+INW2
A11W(KEY)=A11W(KEY)-REAL(A1(3))
ENDIF
ENDIF
KEY=KEY0+INW1
VAR1=A1(1)+A1(2)+A1(3)+A1(4)+A1(5)+A1(6)+A1(7)+A1(8)
A11W(KEY)=A11W(KEY)+REAL(VAR1)+XSGD(L,4)*VOL0
60 NUM1=NUM1+8
70 CONTINUE
DEALLOCATE(IGAR)
RETURN
END
*
SUBROUTINE TRIMWX (IR,NEL,LL4,VOL,MAT,SGD,XSGD,SIDE,ZZ,KN,QFR,MUX,
1 IPX,IPR,A11X)
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER IR,NEL,LL4,MAT(NEL),KN(8*NEL),MUX(LL4),IPX(LL4),IPR
REAL VOL(NEL),SGD(IR,4),XSGD(IR,4),SIDE,ZZ(NEL),QFR(8*NEL),
1 A11X(*)
*----
* LOCAL VARIABLES
*----
DOUBLE PRECISION A1(8),VAR1
INTEGER, DIMENSION(:), ALLOCATABLE :: IGAR
*----
* ASSEMBLY OF MATRIX A11X
*----
ALLOCATE(IGAR(LL4))
LL=0
DO 80 K=1,NEL
IF(MAT(K).LE.0) GO TO 80
LL=LL+1
IGAR(LL)=K
80 CONTINUE
NUM1=0
KEL=0
DO 140 K=1,NEL
L=MAT(K)
IF(L.EQ.0) GO TO 140
VOL0=VOL(K)
IF(VOL0.EQ.0.0) GO TO 130
KEL=KEL+1
*
CALL TRIHCO (IR,K,NEL,VOL0,MAT,SGD(1,1),XSGD(1,1),SIDE,ZZ,
1 KN(NUM1+1),QFR(NUM1+1),IGAR,IPR,A1)
KK3=KN(NUM1+1)
KK4=KN(NUM1+4)
*
INX1=IPX(KEL)
KEY0=MUX(INX1)-INX1
IF(KK3.GT.0) THEN
INX2=IPX(KK3)
IF(INX2.LT.INX1) THEN
KEY=KEY0+INX2
A11X(KEY)=A11X(KEY)-REAL(A1(1))
ENDIF
ENDIF
IF(KK4.GT.0) THEN
INX2=IPX(KK4)
IF(INX2.LT.INX1) THEN
KEY=KEY0+INX2
A11X(KEY)=A11X(KEY)-REAL(A1(4))
ENDIF
ENDIF
KEY=KEY0+INX1
VAR1=A1(1)+A1(2)+A1(3)+A1(4)+A1(5)+A1(6)+A1(7)+A1(8)
A11X(KEY)=A11X(KEY)+REAL(VAR1)+XSGD(L,4)*VOL0
130 NUM1=NUM1+8
140 CONTINUE
DEALLOCATE(IGAR)
RETURN
END
*
SUBROUTINE TRIMWY (IR,NEL,LL4,VOL,MAT,SGD,XSGD,SIDE,ZZ,KN,QFR,
1 MUY,IPY,IPR,A11Y)
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER IR,NEL,LL4,MAT(NEL),KN(8*NEL),MUY(LL4),IPY(LL4),IPR
REAL VOL(NEL),SGD(IR,4),XSGD(IR,4),SIDE,ZZ(NEL),QFR(8*NEL),
1 A11Y(*)
*----
* LOCAL VARIABLES
*----
DOUBLE PRECISION A1(8),VAR1
INTEGER, DIMENSION(:), ALLOCATABLE :: IGAR
*----
* ASSEMBLY OF MATRIX A11Y
*----
ALLOCATE(IGAR(LL4))
LL=0
DO 85 K=1,NEL
IF(MAT(K).LE.0) GO TO 85
LL=LL+1
IGAR(LL)=K
85 CONTINUE
NUM1=0
KEL=0
DO 145 K=1,NEL
L=MAT(K)
IF(L.EQ.0) GO TO 145
VOL0=VOL(K)
IF(VOL0.EQ.0.0) GO TO 135
KEL=KEL+1
*
CALL TRIHCO (IR,K,NEL,VOL0,MAT,SGD(1,1),XSGD(1,1),SIDE,ZZ,
1 KN(NUM1+1),QFR(NUM1+1),IGAR,IPR,A1)
KK5=KN(NUM1+2)
KK6=KN(NUM1+5)
*
INY1=IPY(KEL)
KEY0=MUY(INY1)-INY1
IF(KK5.GT.0) THEN
INY2=IPY(KK5)
IF(INY2.LT.INY1) THEN
KEY=KEY0+INY2
A11Y(KEY)=A11Y(KEY)-REAL(A1(2))
ENDIF
ENDIF
IF(KK6.GT.0) THEN
INY2=IPY(KK6)
IF(INY2.LT.INY1) THEN
KEY=KEY0+INY2
A11Y(KEY)=A11Y(KEY)-REAL(A1(5))
ENDIF
ENDIF
KEY=KEY0+INY1
VAR1=A1(1)+A1(2)+A1(3)+A1(4)+A1(5)+A1(6)+A1(7)+A1(8)
A11Y(KEY)=A11Y(KEY)+REAL(VAR1)+XSGD(L,4)*VOL0
135 NUM1=NUM1+8
145 CONTINUE
DEALLOCATE(IGAR)
RETURN
END
*
SUBROUTINE TRIMWZ (IR,NEL,LL4,VOL,MAT,SGD,XSGD,SIDE,ZZ,KN,QFR,
1 MUZ,IPZ,IPR,A11Z)
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER IR,NEL,LL4,MAT(NEL),KN(8*NEL),MUZ(LL4),IPZ(LL4),IPR
REAL VOL(NEL),SGD(IR,4),XSGD(IR,4),SIDE,ZZ(NEL),QFR(8*NEL),
1 A11Z(*)
*----
* LOCAL VARIABLES
*----
DOUBLE PRECISION A1(8),VAR1
INTEGER, DIMENSION(:), ALLOCATABLE :: IGAR
*----
* ASSEMBLY OF MATRIX A11Z
*----
ALLOCATE(IGAR(LL4))
LL=0
DO 150 K=1,NEL
IF(MAT(K).LE.0) GO TO 150
LL=LL+1
IGAR(LL)=K
150 CONTINUE
NUM1=0
KEL=0
DO 210 K=1,NEL
L=MAT(K)
IF(L.EQ.0) GO TO 210
VOL0=VOL(K)
IF(VOL0.EQ.0.0) GO TO 200
KEL=KEL+1
*
CALL TRIHCO (IR,K,NEL,VOL0,MAT,SGD(1,1),XSGD(1,1),SIDE,ZZ,
1 KN(NUM1+1),QFR(NUM1+1),IGAR,IPR,A1)
KK7=KN(NUM1+7)
KK8=KN(NUM1+8)
*
INZ1=IPZ(KEL)
KEY0=MUZ(INZ1)-INZ1
IF(KK7.GT.0) THEN
INZ2=IPZ(KK7)
IF(INZ2.LT.INZ1) THEN
KEY=KEY0+INZ2
A11Z(KEY)=A11Z(KEY)-REAL(A1(7))
ENDIF
ENDIF
IF(KK8.GT.0) THEN
INZ2=IPZ(KK8)
IF(INZ2.LT.INZ1) THEN
KEY=KEY0+INZ2
A11Z(KEY)=A11Z(KEY)-REAL(A1(8))
ENDIF
ENDIF
KEY=KEY0+INZ1
VAR1=A1(1)+A1(2)+A1(3)+A1(4)+A1(5)+A1(6)+A1(7)+A1(8)
A11Z(KEY)=A11Z(KEY)+REAL(VAR1)+XSGD(L,4)*VOL0
200 NUM1=NUM1+8
210 CONTINUE
DEALLOCATE(IGAR)
RETURN
END
|