summaryrefslogtreecommitdiff
path: root/Trivac/src/TRIHWW.f
blob: 9f049d19b1e5ed8bdd33bbbec25e9d1404e95aa4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
*DECK TRIHWW
      SUBROUTINE TRIHWW(NBMIX,NBLOS,IELEM,LL4F,LL4W,MAT,SIDE,ZZ,FRZ,
     1 QFR,IPERT,KN,SGD,XSGD,MUW,IPBBW,LC,R,V,BBW,TTF,AW,C11W)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Assembly of system matrices for a Thomas-Raviart-Schneider (dual)
* finite element method in hexagonal 3-D diffusion approximation.
* Note: system matrices should be initialized by the calling program.
*
*Copyright:
* Copyright (C) 2006 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* NBMIX   number of mixtures.
* NBLOS   number of lozenges per direction, taking into account
*         mesh-splitting.
* IELEM   degree of the Lagrangian finite elements: =1 (linear);
*         =2 (parabolic); =3 (cubic).
* ICOL    type of quadrature: =1 (analytical integration);
*         =2 (Gauss-Lobatto); =3 (Gauss-Legendre).
* ISPLH   mesh-splitting index. Each hexagon is splitted into 3*ISPLH**2
*         lozenges.
* LL4F    number of flux components.
* LL4W    number of W-directed currents.
* LL4X    number of X-directed currents.
* LL4Y    number of Y-directed currents.
* LL4Z    number of Z-directed currents.
* MAT     mixture index assigned to each element.
* SIDE    side of an hexagon.
* ZZ      Z-directed mesh spacings.
* FRZ     volume fractions for the axial SYME boundary condition.
* QFR     element-ordered boundary conditions.
* IPERT   mixture permutation index.
* KN      ADI permutation indices for the volumes and currents.
* SGD     nuclear properties by material mixture:
*         SGD(L,1)= X-oriented diffusion coefficients;
*         SGD(L,2)= Y-oriented diffusion coefficients;
*         SGD(L,3)= Z-oriented diffusion coefficients;
*         SGD(L,4)= removal macroscopic cross section.
* XSGD    one over nuclear properties.
* MUW     W-directed compressed storage mode indices.
* MUX     X-directed compressed storage mode indices.
* MUY     Y-directed compressed storage mode indices.
* MUZ     Z-directed compressed storage mode indices.
* IPBBW   W-directed perdue storage indices.
* IPBBX   X-directed perdue storage indices.
* IPBBY   Y-directed perdue storage indices.
* IPBBZ   Z-directed perdue storage indices.
* LC      order of the unit matrices.
* R       unit matrix.
* V       unit matrix.
* BBW     W-directed flux-current matrices.
* BBX     X-directed flux-current matrices.
* BBY     Y-directed flux-current matrices.
* BBZ     Z-directed flux-current matrices.
*
*Parameters: output
* TTF     flux-flux matrices.
* AW      W-directed main current-current matrices. Dimensionned to
*         MUW(LL4W).
* AX      X-directed main current-current matrices. Dimensionned to
*         MUX(LL4X).
* AY      Y-directed main current-current matrices. Dimensionned to
*         MUY(LL4Y).
* AZ      Z-directed main current-current matrices. Dimensionned to
*         MUZ(LL4Z).
* C11W    W-directed main current-current matrices to be factorized.
*         Dimensionned to MUW(LL4W).
* C11X    X-directed main current-current matrices to be factorized.
*         Dimensionned to MUX(LL4X).
* C11Y    Y-directed main current-current matrices to be factorized.
*         Dimensionned to MUY(LL4Y).
* C11Z    Z-directed main current-current matrices to be factorized.
*         Dimensionned to MUZ(LL4Z).
*
*-----------------------------------------------------------------------
*
*----
*  SUBROUTINE ARGUMENTS
*----
      INTEGER NBMIX,NBLOS,IELEM,LL4F,LL4W,MAT(3,NBLOS),IPERT(NBLOS),
     1 KN(NBLOS,3+6*(IELEM+2)*IELEM**2),MUW(LL4W),IPBBW(2*IELEM,LL4W),LC
      REAL SIDE,ZZ(3,NBLOS),FRZ(NBLOS),QFR(NBLOS,8),SGD(NBMIX,4),
     1 XSGD(NBMIX,4),R(LC,LC),V(LC,LC-1),TTF(LL4F),BBW(2*IELEM,LL4W),
     2 AW(*),C11W(*)
*----
*  LOCAL VARIABLES
*----
      DOUBLE PRECISION FFF,TTTT
      REAL QQ(5,5)
*----
*  W-ORIENTED COUPLINGS
*----
      DO 25 I0=1,IELEM
      DO 20 J0=1,IELEM
      FFF=0.0D0
      DO 10 K0=2,IELEM
      FFF=FFF+V(K0,I0)*V(K0,J0)/R(K0,K0)
   10 CONTINUE
      IF(ABS(FFF).LE.1.0E-6) FFF=0.0D0
      QQ(I0,J0)=REAL(FFF)
   20 CONTINUE
   25 CONTINUE
*
      NELEH=(IELEM+1)*IELEM**2
      IIMAW=MUW(LL4W)
      TTTT=0.5D0*SQRT(3.D00)*SIDE*SIDE
      NUM=0
      DO 50 KEL=1,NBLOS
      IF(IPERT(KEL).EQ.0) GO TO 50
      NUM=NUM+1
      IBM=MAT(1,IPERT(KEL))
      IF(IBM.EQ.0) GO TO 50
      DZ=ZZ(1,IPERT(KEL))
      VOL0=REAL(TTTT*DZ*FRZ(KEL))
      DINV=XSGD(IBM,1)
      SIG3=SGD(IBM,3)/(DZ*DZ)
      SIG4=SGD(IBM,4)
      DO 34 K5=0,1
      DO 33 K4=0,IELEM-1
      DO 32 K3=0,IELEM-1
      DO 31 K2=1,IELEM+1
      KNW1=KN(NUM,3+K5*NELEH+(K4*IELEM+K3)*(IELEM+1)+K2)
      INW1=ABS(KNW1)
      DO 30 K1=1,IELEM+1
      KNW2=KN(NUM,3+K5*NELEH+(K4*IELEM+K3)*(IELEM+1)+K1)
      INW2=ABS(KNW2)
      IF((KNW2.NE.0).AND.(KNW1.NE.0)) THEN
         L=MUW(INW1)-INW1+INW2
         SG=REAL(SIGN(1,KNW1)*SIGN(1,KNW2))
         IF(K1.LE.K2) AW(L)=AW(L)-(4./3.)*SG*VOL0*DINV*R(K2,K1)
         IF(K1.EQ.K2) THEN
            IF((K1.EQ.1).AND.(K5.EQ.0)) AW(L)=AW(L)-QFR(NUM,1)
            IF((K1.EQ.IELEM+1).AND.(K5.EQ.1)) AW(L)=AW(L)-QFR(NUM,2)
         ENDIF
      ENDIF
   30 CONTINUE
   31 CONTINUE
   32 CONTINUE
   33 CONTINUE
   34 CONTINUE
      DO 42 K3=0,IELEM-1
      DO 41 K2=0,IELEM-1
      DO 40 K1=0,IELEM-1
      JND1=(NUM-1)*IELEM**3+K3*IELEM**2+K2*IELEM+K1+1
      JND2=(KN(NUM,1)-1)*IELEM**3+K3*IELEM**2+K2*IELEM+K1+1
      JND3=(KN(NUM,2)-1)*IELEM**3+K3*IELEM**2+K2*IELEM+K1+1
      TTF(JND1)=TTF(JND1)+VOL0*SIG4+VOL0*QQ(K3+1,K3+1)*SIG3
      TTF(JND2)=TTF(JND2)+VOL0*SIG4+VOL0*QQ(K3+1,K3+1)*SIG3
      TTF(JND3)=TTF(JND3)+VOL0*SIG4+VOL0*QQ(K3+1,K3+1)*SIG3
   40 CONTINUE
   41 CONTINUE
   42 CONTINUE
   50 CONTINUE
*----
*  COMPUTE THE W-ORIENTED SYSTEM MATRIX AFTER FLUX ELIMINATION
*----
      DO 60 I0=1,IIMAW
      C11W(I0)=-AW(I0)
   60 CONTINUE
      MUIM1=0
      DO 90 I=1,LL4W
      MUI=MUW(I)
      DO 80 J=I-(MUI-MUIM1)+1,I
      KEY=MUI-I+J
      DO 75 I0=1,2*IELEM
      II=IPBBW(I0,I)
      IF(II.EQ.0) GO TO 80
      DO 70 J0=1,2*IELEM
      JJ=IPBBW(J0,J)
      IF(II.EQ.JJ) C11W(KEY)=C11W(KEY)+BBW(I0,I)*BBW(J0,J)/TTF(II)
   70 CONTINUE
   75 CONTINUE
   80 CONTINUE
      MUIM1=MUI
   90 CONTINUE
      RETURN
      END
*
      SUBROUTINE TRIHWX(NBMIX,NBLOS,IELEM,LL4F,LL4W,LL4X,MAT,SIDE,ZZ,
     1 FRZ,QFR,IPERT,KN,XSGD,MUX,IPBBX,LC,R,BBX,TTF,AX,C11X)
*----
*  SUBROUTINE ARGUMENTS
*----
      INTEGER NBMIX,NBLOS,IELEM,LL4F,LL4W,LL4X,MAT(3,NBLOS),
     1 MUX(LL4X),IPBBX(2*IELEM,LL4X),LC,IPERT(NBLOS),
     2 KN(NBLOS,3+6*(IELEM+2)*IELEM**2)
      REAL SIDE,ZZ(3,NBLOS),FRZ(NBLOS),QFR(NBLOS,8),XSGD(NBMIX,4),
     1 R(LC,LC),TTF(LL4F),BBX(2*IELEM,LL4X),AX(*),C11X(*)
*----
*  LOCAL VARIABLES
*----
      DOUBLE PRECISION TTTT
*----
*  X-ORIENTED COUPLINGS
*----
      NELEH=(IELEM+1)*IELEM**2
      IIMAX=MUX(LL4X)
      TTTT=0.5D0*SQRT(3.D00)*SIDE*SIDE
      NUM=0
      DO 120 KEL=1,NBLOS
      IF(IPERT(KEL).EQ.0) GO TO 120
      NUM=NUM+1
      IBM=MAT(1,IPERT(KEL))
      IF(IBM.EQ.0) GO TO 120
      VOL0=REAL(TTTT*ZZ(1,IPERT(KEL))*FRZ(KEL))
      DINV=XSGD(IBM,1)
      DO 114 K5=0,1
      DO 113 K4=0,IELEM-1
      DO 112 K3=0,IELEM-1
      DO 111 K2=1,IELEM+1
      KNX1=KN(NUM,3+(K5+2)*NELEH+(K4*IELEM+K3)*(IELEM+1)+K2)
      INX1=ABS(KNX1)-LL4W
      DO 110 K1=1,IELEM+1
      KNX2=KN(NUM,3+(K5+2)*NELEH+(K4*IELEM+K3)*(IELEM+1)+K1)
      INX2=ABS(KNX2)-LL4W
      IF((KNX2.NE.0).AND.(KNX1.NE.0)) THEN
         L=MUX(INX1)-INX1+INX2
         SG=REAL(SIGN(1,KNX1)*SIGN(1,KNX2))
         IF(K1.LE.K2) AX(L)=AX(L)-(4./3.)*SG*VOL0*DINV*R(K2,K1)
         IF(K1.EQ.K2) THEN
            IF((K1.EQ.1).AND.(K5.EQ.0)) AX(L)=AX(L)-QFR(NUM,3)
            IF((K1.EQ.IELEM+1).AND.(K5.EQ.1)) AX(L)=AX(L)-QFR(NUM,4)
         ENDIF
      ENDIF
  110 CONTINUE
  111 CONTINUE
  112 CONTINUE
  113 CONTINUE
  114 CONTINUE
  120 CONTINUE
*----
*  COMPUTE THE X-ORIENTED SYSTEM MATRIX AFTER FLUX ELIMINATION
*----
      DO 130 I0=1,IIMAX
      C11X(I0)=-AX(I0)
  130 CONTINUE
      MUIM1=0
      DO 160 I=1,LL4X
      MUI=MUX(I)
      DO 150 J=I-(MUI-MUIM1)+1,I
      KEY=MUI-I+J
      DO 145 I0=1,2*IELEM
      II=IPBBX(I0,I)
      IF(II.EQ.0) GO TO 150
      DO 140 J0=1,2*IELEM
      JJ=IPBBX(J0,J)
      IF(II.EQ.JJ) C11X(KEY)=C11X(KEY)+BBX(I0,I)*BBX(J0,J)/TTF(II)
  140 CONTINUE
  145 CONTINUE
  150 CONTINUE
      MUIM1=MUI
  160 CONTINUE
      RETURN
      END
*
      SUBROUTINE TRIHWY(NBMIX,NBLOS,IELEM,LL4F,LL4W,LL4X,LL4Y,MAT,
     1 SIDE,ZZ,FRZ,QFR,IPERT,KN,XSGD,MUY,IPBBY,LC,R,BBY,TTF,AY,C11Y)
*----
*  SUBROUTINE ARGUMENTS
*----
      INTEGER NBMIX,NBLOS,IELEM,LL4F,LL4W,LL4X,LL4Y,MAT(3,NBLOS),
     1 MUY(LL4Y),IPBBY(2*IELEM,LL4Y),LC,IPERT(NBLOS),
     2 KN(NBLOS,3+6*(IELEM+2)*IELEM**2)
      REAL SIDE,ZZ(3,NBLOS),FRZ(NBLOS),QFR(NBLOS,8),XSGD(NBMIX,4),
     1 R(LC,LC),TTF(LL4F),BBY(2*IELEM,LL4Y),AY(*),C11Y(*)
*----
*  LOCAL VARIABLES
*----
      DOUBLE PRECISION TTTT
*----
*  Y-ORIENTED COUPLINGS
*----
      NELEH=(IELEM+1)*IELEM**2
      IIMAY=MUY(LL4Y)
      TTTT=0.5D0*SQRT(3.D00)*SIDE*SIDE
      NUM=0
      DO 220 KEL=1,NBLOS
      IF(IPERT(KEL).EQ.0) GO TO 220
      NUM=NUM+1
      IBM=MAT(1,IPERT(KEL))
      IF(IBM.EQ.0) GO TO 220
      VOL0=REAL(TTTT*ZZ(1,IPERT(KEL))*FRZ(KEL))
      DINV=XSGD(IBM,1)
      DO 214 K5=0,1
      DO 213 K4=0,IELEM-1
      DO 212 K3=0,IELEM-1
      DO 211 K2=1,IELEM+1
      KNY1=KN(NUM,3+(K5+4)*NELEH+(K4*IELEM+K3)*(IELEM+1)+K2)
      INY1=ABS(KNY1)-LL4W-LL4X
      DO 210 K1=1,IELEM+1
      KNY2=KN(NUM,3+(K5+4)*NELEH+(K4*IELEM+K3)*(IELEM+1)+K1)
      INY2=ABS(KNY2)-LL4W-LL4X
      IF((KNY2.NE.0).AND.(KNY1.NE.0)) THEN
         L=MUY(INY1)-INY1+INY2
         SG=REAL(SIGN(1,KNY1)*SIGN(1,KNY2))
         IF(K1.LE.K2) AY(L)=AY(L)-(4./3.)*SG*VOL0*DINV*R(K2,K1)
         IF(K1.EQ.K2) THEN
            IF((K1.EQ.1).AND.(K5.EQ.0)) AY(L)=AY(L)-QFR(NUM,5)
            IF((K1.EQ.IELEM+1).AND.(K5.EQ.1)) AY(L)=AY(L)-QFR(NUM,6)
         ENDIF
      ENDIF
  210 CONTINUE
  211 CONTINUE
  212 CONTINUE
  213 CONTINUE
  214 CONTINUE
  220 CONTINUE
*----
*  COMPUTE THE Y-ORIENTED SYSTEM MATRIX AFTER FLUX ELIMINATION
*----
      DO 230 I0=1,IIMAY
      C11Y(I0)=-AY(I0)
  230 CONTINUE
      MUIM1=0
      DO 260 I=1,LL4Y
      MUI=MUY(I)
      DO 250 J=I-(MUI-MUIM1)+1,I
      KEY=MUI-I+J
      DO 245 I0=1,2*IELEM
      II=IPBBY(I0,I)
      IF(II.EQ.0) GO TO 250
      DO 240 J0=1,2*IELEM
      JJ=IPBBY(J0,J)
      IF(II.EQ.JJ) C11Y(KEY)=C11Y(KEY)+BBY(I0,I)*BBY(J0,J)/TTF(II)
  240 CONTINUE
  245 CONTINUE
  250 CONTINUE
      MUIM1=MUI
  260 CONTINUE
      RETURN
      END
*
      SUBROUTINE TRIHWZ(NBMIX,NBLOS,IELEM,ICOL,LL4F,LL4W,LL4X,LL4Y,
     1 LL4Z,MAT,SIDE,ZZ,FRZ,QFR,IPERT,KN,XSGD,MUZ,IPBBZ,LC,R,BBZ,TTF,
     2 AZ,C11Z)
*----
*  SUBROUTINE ARGUMENTS
*----
      INTEGER NBMIX,NBLOS,IELEM,ICOL,LL4F,LL4W,LL4X,LL4Y,LL4Z,
     1 MAT(3,NBLOS),MUZ(LL4Z),IPBBZ(2*IELEM,LL4Z),LC,IPERT(NBLOS),
     2 KN(NBLOS,3+6*(IELEM+2)*IELEM**2)
      REAL SIDE,ZZ(3,NBLOS),FRZ(NBLOS),QFR(NBLOS,8),XSGD(NBMIX,4),
     1 R(LC,LC),TTF(LL4F),BBZ(2*IELEM,LL4Z),AZ(*),C11Z(*)
*----
*  LOCAL VARIABLES
*----
      DOUBLE PRECISION TTTT
*----
*  Z-ORIENTED COUPLINGS
*----
      NELEH=(IELEM+1)*IELEM**2
      IIMAZ=MUZ(LL4Z)
      TTTT=0.5D0*SQRT(3.D00)*SIDE*SIDE
      NUM=0
      DO 340 KEL=1,NBLOS
      IF(IPERT(KEL).EQ.0) GO TO 340
      NUM=NUM+1
      IBM=MAT(1,IPERT(KEL))
      IF(IBM.EQ.0) GO TO 340
      VOL0=REAL(TTTT*ZZ(1,IPERT(KEL))*FRZ(KEL))
      DINV=XSGD(IBM,3)
      DO 292 K5=0,2 ! THREE LOZENGES PER HEXAGON
      DO 291 K2=0,IELEM-1
      DO 290 K1=0,IELEM-1
      KNZ1=KN(NUM,3+6*NELEH+2*K5*IELEM**2+K2*IELEM+K1+1)
      KNZ2=KN(NUM,3+6*NELEH+(2*K5+1)*IELEM**2+K2*IELEM+K1+1)
      INZ1=ABS(KNZ1)-LL4W-LL4X-LL4Y
      INZ2=ABS(KNZ2)-LL4W-LL4X-LL4Y
      IF(KNZ1.NE.0) THEN
         KEY=MUZ(INZ1)
         AZ(KEY)=AZ(KEY)-VOL0*R(1,1)*DINV-QFR(NUM,7)
      ENDIF
      IF(KNZ2.NE.0) THEN
         KEY=MUZ(INZ2)
         AZ(KEY)=AZ(KEY)-VOL0*R(IELEM+1,IELEM+1)*DINV-QFR(NUM,8)
      ENDIF
      IF((ICOL.NE.2).AND.(KNZ1.NE.0).AND.(KNZ2.NE.0)) THEN
         IF(INZ2.GT.INZ1) KEY=MUZ(INZ2)-INZ2+INZ1
         IF(INZ2.LE.INZ1) KEY=MUZ(INZ1)-INZ1+INZ2
         SG=REAL(SIGN(1,KNZ1)*SIGN(1,KNZ2))
         IF(INZ1.EQ.INZ2) SG=2.0*SG
         AZ(KEY)=AZ(KEY)-SG*VOL0*R(IELEM+1,1)*DINV
      ENDIF
  290 CONTINUE
  291 CONTINUE
  292 CONTINUE
  340 CONTINUE
*
      DO 350 I0=1,IIMAZ
      C11Z(I0)=-AZ(I0)
  350 CONTINUE
      MUIM1=0
      DO 380 I=1,LL4Z
      MUI=MUZ(I)
      DO 370 J=I-(MUI-MUIM1)+1,I
      KEY=MUI-I+J
      DO 365 I0=1,2*IELEM
      II=IPBBZ(I0,I)
      IF(II.EQ.0) GO TO 370
      DO 360 J0=1,2*IELEM
      JJ=IPBBZ(J0,J)
      IF(II.EQ.JJ) C11Z(KEY)=C11Z(KEY)+BBZ(I0,I)*BBZ(J0,J)/TTF(II)
  360 CONTINUE
  365 CONTINUE
  370 CONTINUE
      MUIM1=MUI
  380 CONTINUE
      RETURN
      END