1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
|
*DECK TRIHWW
SUBROUTINE TRIHWW(NBMIX,NBLOS,IELEM,LL4F,LL4W,MAT,SIDE,ZZ,FRZ,
1 QFR,IPERT,KN,SGD,XSGD,MUW,IPBBW,LC,R,V,BBW,TTF,AW,C11W)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Assembly of system matrices for a Thomas-Raviart-Schneider (dual)
* finite element method in hexagonal 3-D diffusion approximation.
* Note: system matrices should be initialized by the calling program.
*
*Copyright:
* Copyright (C) 2006 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* NBMIX number of mixtures.
* NBLOS number of lozenges per direction, taking into account
* mesh-splitting.
* IELEM degree of the Lagrangian finite elements: =1 (linear);
* =2 (parabolic); =3 (cubic).
* ICOL type of quadrature: =1 (analytical integration);
* =2 (Gauss-Lobatto); =3 (Gauss-Legendre).
* ISPLH mesh-splitting index. Each hexagon is splitted into 3*ISPLH**2
* lozenges.
* LL4F number of flux components.
* LL4W number of W-directed currents.
* LL4X number of X-directed currents.
* LL4Y number of Y-directed currents.
* LL4Z number of Z-directed currents.
* MAT mixture index assigned to each element.
* SIDE side of an hexagon.
* ZZ Z-directed mesh spacings.
* FRZ volume fractions for the axial SYME boundary condition.
* QFR element-ordered boundary conditions.
* IPERT mixture permutation index.
* KN ADI permutation indices for the volumes and currents.
* SGD nuclear properties by material mixture:
* SGD(L,1)= X-oriented diffusion coefficients;
* SGD(L,2)= Y-oriented diffusion coefficients;
* SGD(L,3)= Z-oriented diffusion coefficients;
* SGD(L,4)= removal macroscopic cross section.
* XSGD one over nuclear properties.
* MUW W-directed compressed storage mode indices.
* MUX X-directed compressed storage mode indices.
* MUY Y-directed compressed storage mode indices.
* MUZ Z-directed compressed storage mode indices.
* IPBBW W-directed perdue storage indices.
* IPBBX X-directed perdue storage indices.
* IPBBY Y-directed perdue storage indices.
* IPBBZ Z-directed perdue storage indices.
* LC order of the unit matrices.
* R unit matrix.
* V unit matrix.
* BBW W-directed flux-current matrices.
* BBX X-directed flux-current matrices.
* BBY Y-directed flux-current matrices.
* BBZ Z-directed flux-current matrices.
*
*Parameters: output
* TTF flux-flux matrices.
* AW W-directed main current-current matrices. Dimensionned to
* MUW(LL4W).
* AX X-directed main current-current matrices. Dimensionned to
* MUX(LL4X).
* AY Y-directed main current-current matrices. Dimensionned to
* MUY(LL4Y).
* AZ Z-directed main current-current matrices. Dimensionned to
* MUZ(LL4Z).
* C11W W-directed main current-current matrices to be factorized.
* Dimensionned to MUW(LL4W).
* C11X X-directed main current-current matrices to be factorized.
* Dimensionned to MUX(LL4X).
* C11Y Y-directed main current-current matrices to be factorized.
* Dimensionned to MUY(LL4Y).
* C11Z Z-directed main current-current matrices to be factorized.
* Dimensionned to MUZ(LL4Z).
*
*-----------------------------------------------------------------------
*
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER NBMIX,NBLOS,IELEM,LL4F,LL4W,MAT(3,NBLOS),IPERT(NBLOS),
1 KN(NBLOS,3+6*(IELEM+2)*IELEM**2),MUW(LL4W),IPBBW(2*IELEM,LL4W),LC
REAL SIDE,ZZ(3,NBLOS),FRZ(NBLOS),QFR(NBLOS,8),SGD(NBMIX,4),
1 XSGD(NBMIX,4),R(LC,LC),V(LC,LC-1),TTF(LL4F),BBW(2*IELEM,LL4W),
2 AW(*),C11W(*)
*----
* LOCAL VARIABLES
*----
DOUBLE PRECISION FFF,TTTT
REAL QQ(5,5)
*----
* W-ORIENTED COUPLINGS
*----
DO 25 I0=1,IELEM
DO 20 J0=1,IELEM
FFF=0.0D0
DO 10 K0=2,IELEM
FFF=FFF+V(K0,I0)*V(K0,J0)/R(K0,K0)
10 CONTINUE
IF(ABS(FFF).LE.1.0E-6) FFF=0.0D0
QQ(I0,J0)=REAL(FFF)
20 CONTINUE
25 CONTINUE
*
NELEH=(IELEM+1)*IELEM**2
IIMAW=MUW(LL4W)
TTTT=0.5D0*SQRT(3.D00)*SIDE*SIDE
NUM=0
DO 50 KEL=1,NBLOS
IF(IPERT(KEL).EQ.0) GO TO 50
NUM=NUM+1
IBM=MAT(1,IPERT(KEL))
IF(IBM.EQ.0) GO TO 50
DZ=ZZ(1,IPERT(KEL))
VOL0=REAL(TTTT*DZ*FRZ(KEL))
DINV=XSGD(IBM,1)
SIG3=SGD(IBM,3)/(DZ*DZ)
SIG4=SGD(IBM,4)
DO 34 K5=0,1
DO 33 K4=0,IELEM-1
DO 32 K3=0,IELEM-1
DO 31 K2=1,IELEM+1
KNW1=KN(NUM,3+K5*NELEH+(K4*IELEM+K3)*(IELEM+1)+K2)
INW1=ABS(KNW1)
DO 30 K1=1,IELEM+1
KNW2=KN(NUM,3+K5*NELEH+(K4*IELEM+K3)*(IELEM+1)+K1)
INW2=ABS(KNW2)
IF((KNW2.NE.0).AND.(KNW1.NE.0)) THEN
L=MUW(INW1)-INW1+INW2
SG=REAL(SIGN(1,KNW1)*SIGN(1,KNW2))
IF(K1.LE.K2) AW(L)=AW(L)-(4./3.)*SG*VOL0*DINV*R(K2,K1)
IF(K1.EQ.K2) THEN
IF((K1.EQ.1).AND.(K5.EQ.0)) AW(L)=AW(L)-QFR(NUM,1)
IF((K1.EQ.IELEM+1).AND.(K5.EQ.1)) AW(L)=AW(L)-QFR(NUM,2)
ENDIF
ENDIF
30 CONTINUE
31 CONTINUE
32 CONTINUE
33 CONTINUE
34 CONTINUE
DO 42 K3=0,IELEM-1
DO 41 K2=0,IELEM-1
DO 40 K1=0,IELEM-1
JND1=(NUM-1)*IELEM**3+K3*IELEM**2+K2*IELEM+K1+1
JND2=(KN(NUM,1)-1)*IELEM**3+K3*IELEM**2+K2*IELEM+K1+1
JND3=(KN(NUM,2)-1)*IELEM**3+K3*IELEM**2+K2*IELEM+K1+1
TTF(JND1)=TTF(JND1)+VOL0*SIG4+VOL0*QQ(K3+1,K3+1)*SIG3
TTF(JND2)=TTF(JND2)+VOL0*SIG4+VOL0*QQ(K3+1,K3+1)*SIG3
TTF(JND3)=TTF(JND3)+VOL0*SIG4+VOL0*QQ(K3+1,K3+1)*SIG3
40 CONTINUE
41 CONTINUE
42 CONTINUE
50 CONTINUE
*----
* COMPUTE THE W-ORIENTED SYSTEM MATRIX AFTER FLUX ELIMINATION
*----
DO 60 I0=1,IIMAW
C11W(I0)=-AW(I0)
60 CONTINUE
MUIM1=0
DO 90 I=1,LL4W
MUI=MUW(I)
DO 80 J=I-(MUI-MUIM1)+1,I
KEY=MUI-I+J
DO 75 I0=1,2*IELEM
II=IPBBW(I0,I)
IF(II.EQ.0) GO TO 80
DO 70 J0=1,2*IELEM
JJ=IPBBW(J0,J)
IF(II.EQ.JJ) C11W(KEY)=C11W(KEY)+BBW(I0,I)*BBW(J0,J)/TTF(II)
70 CONTINUE
75 CONTINUE
80 CONTINUE
MUIM1=MUI
90 CONTINUE
RETURN
END
*
SUBROUTINE TRIHWX(NBMIX,NBLOS,IELEM,LL4F,LL4W,LL4X,MAT,SIDE,ZZ,
1 FRZ,QFR,IPERT,KN,XSGD,MUX,IPBBX,LC,R,BBX,TTF,AX,C11X)
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER NBMIX,NBLOS,IELEM,LL4F,LL4W,LL4X,MAT(3,NBLOS),
1 MUX(LL4X),IPBBX(2*IELEM,LL4X),LC,IPERT(NBLOS),
2 KN(NBLOS,3+6*(IELEM+2)*IELEM**2)
REAL SIDE,ZZ(3,NBLOS),FRZ(NBLOS),QFR(NBLOS,8),XSGD(NBMIX,4),
1 R(LC,LC),TTF(LL4F),BBX(2*IELEM,LL4X),AX(*),C11X(*)
*----
* LOCAL VARIABLES
*----
DOUBLE PRECISION TTTT
*----
* X-ORIENTED COUPLINGS
*----
NELEH=(IELEM+1)*IELEM**2
IIMAX=MUX(LL4X)
TTTT=0.5D0*SQRT(3.D00)*SIDE*SIDE
NUM=0
DO 120 KEL=1,NBLOS
IF(IPERT(KEL).EQ.0) GO TO 120
NUM=NUM+1
IBM=MAT(1,IPERT(KEL))
IF(IBM.EQ.0) GO TO 120
VOL0=REAL(TTTT*ZZ(1,IPERT(KEL))*FRZ(KEL))
DINV=XSGD(IBM,1)
DO 114 K5=0,1
DO 113 K4=0,IELEM-1
DO 112 K3=0,IELEM-1
DO 111 K2=1,IELEM+1
KNX1=KN(NUM,3+(K5+2)*NELEH+(K4*IELEM+K3)*(IELEM+1)+K2)
INX1=ABS(KNX1)-LL4W
DO 110 K1=1,IELEM+1
KNX2=KN(NUM,3+(K5+2)*NELEH+(K4*IELEM+K3)*(IELEM+1)+K1)
INX2=ABS(KNX2)-LL4W
IF((KNX2.NE.0).AND.(KNX1.NE.0)) THEN
L=MUX(INX1)-INX1+INX2
SG=REAL(SIGN(1,KNX1)*SIGN(1,KNX2))
IF(K1.LE.K2) AX(L)=AX(L)-(4./3.)*SG*VOL0*DINV*R(K2,K1)
IF(K1.EQ.K2) THEN
IF((K1.EQ.1).AND.(K5.EQ.0)) AX(L)=AX(L)-QFR(NUM,3)
IF((K1.EQ.IELEM+1).AND.(K5.EQ.1)) AX(L)=AX(L)-QFR(NUM,4)
ENDIF
ENDIF
110 CONTINUE
111 CONTINUE
112 CONTINUE
113 CONTINUE
114 CONTINUE
120 CONTINUE
*----
* COMPUTE THE X-ORIENTED SYSTEM MATRIX AFTER FLUX ELIMINATION
*----
DO 130 I0=1,IIMAX
C11X(I0)=-AX(I0)
130 CONTINUE
MUIM1=0
DO 160 I=1,LL4X
MUI=MUX(I)
DO 150 J=I-(MUI-MUIM1)+1,I
KEY=MUI-I+J
DO 145 I0=1,2*IELEM
II=IPBBX(I0,I)
IF(II.EQ.0) GO TO 150
DO 140 J0=1,2*IELEM
JJ=IPBBX(J0,J)
IF(II.EQ.JJ) C11X(KEY)=C11X(KEY)+BBX(I0,I)*BBX(J0,J)/TTF(II)
140 CONTINUE
145 CONTINUE
150 CONTINUE
MUIM1=MUI
160 CONTINUE
RETURN
END
*
SUBROUTINE TRIHWY(NBMIX,NBLOS,IELEM,LL4F,LL4W,LL4X,LL4Y,MAT,
1 SIDE,ZZ,FRZ,QFR,IPERT,KN,XSGD,MUY,IPBBY,LC,R,BBY,TTF,AY,C11Y)
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER NBMIX,NBLOS,IELEM,LL4F,LL4W,LL4X,LL4Y,MAT(3,NBLOS),
1 MUY(LL4Y),IPBBY(2*IELEM,LL4Y),LC,IPERT(NBLOS),
2 KN(NBLOS,3+6*(IELEM+2)*IELEM**2)
REAL SIDE,ZZ(3,NBLOS),FRZ(NBLOS),QFR(NBLOS,8),XSGD(NBMIX,4),
1 R(LC,LC),TTF(LL4F),BBY(2*IELEM,LL4Y),AY(*),C11Y(*)
*----
* LOCAL VARIABLES
*----
DOUBLE PRECISION TTTT
*----
* Y-ORIENTED COUPLINGS
*----
NELEH=(IELEM+1)*IELEM**2
IIMAY=MUY(LL4Y)
TTTT=0.5D0*SQRT(3.D00)*SIDE*SIDE
NUM=0
DO 220 KEL=1,NBLOS
IF(IPERT(KEL).EQ.0) GO TO 220
NUM=NUM+1
IBM=MAT(1,IPERT(KEL))
IF(IBM.EQ.0) GO TO 220
VOL0=REAL(TTTT*ZZ(1,IPERT(KEL))*FRZ(KEL))
DINV=XSGD(IBM,1)
DO 214 K5=0,1
DO 213 K4=0,IELEM-1
DO 212 K3=0,IELEM-1
DO 211 K2=1,IELEM+1
KNY1=KN(NUM,3+(K5+4)*NELEH+(K4*IELEM+K3)*(IELEM+1)+K2)
INY1=ABS(KNY1)-LL4W-LL4X
DO 210 K1=1,IELEM+1
KNY2=KN(NUM,3+(K5+4)*NELEH+(K4*IELEM+K3)*(IELEM+1)+K1)
INY2=ABS(KNY2)-LL4W-LL4X
IF((KNY2.NE.0).AND.(KNY1.NE.0)) THEN
L=MUY(INY1)-INY1+INY2
SG=REAL(SIGN(1,KNY1)*SIGN(1,KNY2))
IF(K1.LE.K2) AY(L)=AY(L)-(4./3.)*SG*VOL0*DINV*R(K2,K1)
IF(K1.EQ.K2) THEN
IF((K1.EQ.1).AND.(K5.EQ.0)) AY(L)=AY(L)-QFR(NUM,5)
IF((K1.EQ.IELEM+1).AND.(K5.EQ.1)) AY(L)=AY(L)-QFR(NUM,6)
ENDIF
ENDIF
210 CONTINUE
211 CONTINUE
212 CONTINUE
213 CONTINUE
214 CONTINUE
220 CONTINUE
*----
* COMPUTE THE Y-ORIENTED SYSTEM MATRIX AFTER FLUX ELIMINATION
*----
DO 230 I0=1,IIMAY
C11Y(I0)=-AY(I0)
230 CONTINUE
MUIM1=0
DO 260 I=1,LL4Y
MUI=MUY(I)
DO 250 J=I-(MUI-MUIM1)+1,I
KEY=MUI-I+J
DO 245 I0=1,2*IELEM
II=IPBBY(I0,I)
IF(II.EQ.0) GO TO 250
DO 240 J0=1,2*IELEM
JJ=IPBBY(J0,J)
IF(II.EQ.JJ) C11Y(KEY)=C11Y(KEY)+BBY(I0,I)*BBY(J0,J)/TTF(II)
240 CONTINUE
245 CONTINUE
250 CONTINUE
MUIM1=MUI
260 CONTINUE
RETURN
END
*
SUBROUTINE TRIHWZ(NBMIX,NBLOS,IELEM,ICOL,LL4F,LL4W,LL4X,LL4Y,
1 LL4Z,MAT,SIDE,ZZ,FRZ,QFR,IPERT,KN,XSGD,MUZ,IPBBZ,LC,R,BBZ,TTF,
2 AZ,C11Z)
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER NBMIX,NBLOS,IELEM,ICOL,LL4F,LL4W,LL4X,LL4Y,LL4Z,
1 MAT(3,NBLOS),MUZ(LL4Z),IPBBZ(2*IELEM,LL4Z),LC,IPERT(NBLOS),
2 KN(NBLOS,3+6*(IELEM+2)*IELEM**2)
REAL SIDE,ZZ(3,NBLOS),FRZ(NBLOS),QFR(NBLOS,8),XSGD(NBMIX,4),
1 R(LC,LC),TTF(LL4F),BBZ(2*IELEM,LL4Z),AZ(*),C11Z(*)
*----
* LOCAL VARIABLES
*----
DOUBLE PRECISION TTTT
*----
* Z-ORIENTED COUPLINGS
*----
NELEH=(IELEM+1)*IELEM**2
IIMAZ=MUZ(LL4Z)
TTTT=0.5D0*SQRT(3.D00)*SIDE*SIDE
NUM=0
DO 340 KEL=1,NBLOS
IF(IPERT(KEL).EQ.0) GO TO 340
NUM=NUM+1
IBM=MAT(1,IPERT(KEL))
IF(IBM.EQ.0) GO TO 340
VOL0=REAL(TTTT*ZZ(1,IPERT(KEL))*FRZ(KEL))
DINV=XSGD(IBM,3)
DO 292 K5=0,2 ! THREE LOZENGES PER HEXAGON
DO 291 K2=0,IELEM-1
DO 290 K1=0,IELEM-1
KNZ1=KN(NUM,3+6*NELEH+2*K5*IELEM**2+K2*IELEM+K1+1)
KNZ2=KN(NUM,3+6*NELEH+(2*K5+1)*IELEM**2+K2*IELEM+K1+1)
INZ1=ABS(KNZ1)-LL4W-LL4X-LL4Y
INZ2=ABS(KNZ2)-LL4W-LL4X-LL4Y
IF(KNZ1.NE.0) THEN
KEY=MUZ(INZ1)
AZ(KEY)=AZ(KEY)-VOL0*R(1,1)*DINV-QFR(NUM,7)
ENDIF
IF(KNZ2.NE.0) THEN
KEY=MUZ(INZ2)
AZ(KEY)=AZ(KEY)-VOL0*R(IELEM+1,IELEM+1)*DINV-QFR(NUM,8)
ENDIF
IF((ICOL.NE.2).AND.(KNZ1.NE.0).AND.(KNZ2.NE.0)) THEN
IF(INZ2.GT.INZ1) KEY=MUZ(INZ2)-INZ2+INZ1
IF(INZ2.LE.INZ1) KEY=MUZ(INZ1)-INZ1+INZ2
SG=REAL(SIGN(1,KNZ1)*SIGN(1,KNZ2))
IF(INZ1.EQ.INZ2) SG=2.0*SG
AZ(KEY)=AZ(KEY)-SG*VOL0*R(IELEM+1,1)*DINV
ENDIF
290 CONTINUE
291 CONTINUE
292 CONTINUE
340 CONTINUE
*
DO 350 I0=1,IIMAZ
C11Z(I0)=-AZ(I0)
350 CONTINUE
MUIM1=0
DO 380 I=1,LL4Z
MUI=MUZ(I)
DO 370 J=I-(MUI-MUIM1)+1,I
KEY=MUI-I+J
DO 365 I0=1,2*IELEM
II=IPBBZ(I0,I)
IF(II.EQ.0) GO TO 370
DO 360 J0=1,2*IELEM
JJ=IPBBZ(J0,J)
IF(II.EQ.JJ) C11Z(KEY)=C11Z(KEY)+BBZ(I0,I)*BBZ(J0,J)/TTF(II)
360 CONTINUE
365 CONTINUE
370 CONTINUE
MUIM1=MUI
380 CONTINUE
RETURN
END
|