1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
|
*DECK TRIDXX
SUBROUTINE TRIDXX(NBMIX,CYLIND,IELEM,ICOL,NEL,LL4F,LL4X,MAT,VOL,
1 XX,YY,ZZ,DD,KN,QFR,SGD,XSGD,MUX,IPBBX,LC,R,V,BBX,TTF,AX,C11X)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Assembly of system matrices for a Thomas-Raviart (dual) finite element
* method in Cartesian 3-D diffusion approximation.
* Note: system matrices should be initialized by the calling program.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* NBMIX number of mixtures.
* CYLIND cylindrical geometry flag (set with CYLIND=.true.).
* IELEM degree of the Lagrangian finite elements: =1 (linear);
* =2 (parabolic); =3 (cubic).
* ICOL type of quadrature: =1 (analytical integration);
* =2 (Gauss-Lobatto); =3 (Gauss-Legendre).
* NEL total number of finite elements.
* LL4F number of flux components.
* LL4X number of X-directed currents.
* LL4Y number of Y-directed currents.
* LL4Z number of Z-directed currents.
* MAT mixture index assigned to each element.
* VOL volume of each element.
* XX X-directed mesh spacings.
* YY Y-directed mesh spacings.
* ZZ Z-directed mesh spacings.
* DD used with cylindrical geometry.
* KN element-ordered unknown list.
* QFR element-ordered boundary conditions.
* SGD nuclear properties by material mixture:
* SGD(L,1)= X-oriented diffusion coefficients;
* SGD(L,2)= Y-oriented diffusion coefficients;
* SGD(L,3)= Z-oriented diffusion coefficients;
* SGD(L,4)= removal macroscopic cross section.
* XSGD one over nuclear properties.
* MUX X-directed compressed storage mode indices.
* MUY Y-directed compressed storage mode indices.
* MUZ Z-directed compressed storage mode indices.
* IPBBX X-directed perdue storage indices.
* IPBBY Y-directed perdue storage indices.
* IPBBZ Z-directed perdue storage indices.
* LC order of the unit matrices.
* R unit matrix.
* V unit matrix.
* BBX X-directed flux-current matrices.
* BBY Y-directed flux-current matrices.
* BBZ Z-directed flux-current matrices.
*
*Parameters: output
* TTF flux-flux matrices.
* AX X-directed main current-current matrices. Dimensionned to
* MUX(LL4X).
* AY Y-directed main current-current matrices. Dimensionned to
* MUY(LL4Y).
* AZ Z-directed main current-current matrices. Dimensionned to
* MUZ(LL4Z).
* C11X X-directed main current-current matrices to be factorized.
* Dimensionned to MUX(LL4X).
* C11Y Y-directed main current-current matrices to be factorized.
* Dimensionned to MUY(LL4Y).
* C11Z Z-directed main current-current matrices to be factorized.
* Dimensionned to MUZ(LL4Z).
*
*-----------------------------------------------------------------------
*
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER NBMIX,IELEM,ICOL,NEL,LL4F,LL4X,MAT(NEL),
1 KN(NEL*(1+6*IELEM**2)),MUX(LL4X),IPBBX(2*IELEM,LL4X),LC
REAL VOL(NEL),XX(NEL),YY(NEL),ZZ(NEL),DD(NEL),QFR(6*NEL),
1 SGD(NBMIX,4),XSGD(NBMIX,4),R(LC,LC),V(LC,LC-1),TTF(LL4F),
2 BBX(2*IELEM,LL4X),AX(*),C11X(*)
LOGICAL CYLIND
*----
* LOCAL VARIABLES
*----
DOUBLE PRECISION FFF
REAL QQ(5,5)
*----
* X-ORIENTED COUPLINGS
*----
IF((CYLIND).AND.((IELEM.GT.1).OR.(ICOL.NE.2)))
1 CALL XABORT('TRIDXX: TYPE OF DISCRETIZATION NOT IMPLEMENTED.')
DO 25 I0=1,IELEM
DO 20 J0=1,IELEM
FFF=0.0D0
DO 10 K0=2,IELEM
FFF=FFF+V(K0,I0)*V(K0,J0)/R(K0,K0)
10 CONTINUE
IF(ABS(FFF).LE.1.0E-6) FFF=0.0D0
QQ(I0,J0)=REAL(FFF)
20 CONTINUE
25 CONTINUE
*
NUM1=0
NUM2=0
DO 60 IE=1,NEL
L=MAT(IE)
IF(L.EQ.0) GO TO 60
VOL0=VOL(IE)
IF(VOL0.EQ.0.0) GO TO 50
DX=XX(IE)
DY=YY(IE)
DZ=ZZ(IE)
IF(CYLIND) THEN
DIN=1.0-0.5*DX/DD(IE)
DOT=1.0+0.5*DX/DD(IE)
ELSE
DIN=1.0
DOT=1.0
ENDIF
*
DO 45 K3=0,IELEM-1
DO 40 K2=0,IELEM-1
KN1=KN(NUM1+2+K3*IELEM+K2)
KN2=KN(NUM1+2+IELEM**2+K3*IELEM+K2)
INX1=ABS(KN1)-LL4F
INX2=ABS(KN2)-LL4F
DO 30 K1=0,IELEM-1
JND1=KN(NUM1+1)+(K3*IELEM+K2)*IELEM+K1
TTF(JND1)=TTF(JND1)+VOL0*SGD(L,4)+VOL0*QQ(K1+1,K1+1)*SGD(L,1)/
1 (DX*DX)
TTF(JND1)=TTF(JND1)+VOL0*QQ(K2+1,K2+1)*SGD(L,2)/(DY*DY)
TTF(JND1)=TTF(JND1)+VOL0*QQ(K3+1,K3+1)*SGD(L,3)/(DZ*DZ)
30 CONTINUE
IF(KN1.NE.0) THEN
KEY=MUX(INX1)
AX(KEY)=AX(KEY)-DIN*(VOL0*R(1,1)*XSGD(L,1)+QFR(NUM2+1))
ENDIF
IF(KN2.NE.0) THEN
KEY=MUX(INX2)
AX(KEY)=AX(KEY)-DOT*(VOL0*R(IELEM+1,IELEM+1)*XSGD(L,1)
1 +QFR(NUM2+2))
ENDIF
IF((ICOL.NE.2).AND.(KN1.NE.0).AND.(KN2.NE.0)) THEN
IF(INX2.GT.INX1) KEY=MUX(INX2)-INX2+INX1
IF(INX2.LE.INX1) KEY=MUX(INX1)-INX1+INX2
SG=REAL(SIGN(1,KN1)*SIGN(1,KN2))
IF(INX1.EQ.INX2) SG=2.0*SG
AX(KEY)=AX(KEY)-SG*VOL0*R(IELEM+1,1)*XSGD(L,1)
ENDIF
40 CONTINUE
45 CONTINUE
50 NUM1=NUM1+1+6*IELEM**2
NUM2=NUM2+6
60 CONTINUE
*
DO 121 I0=1,MUX(LL4X)
C11X(I0)=-AX(I0)
121 CONTINUE
MUIM1=0
DO 716 I=1,LL4X
MUI=MUX(I)
DO 715 J=I-(MUI-MUIM1)+1,I
KEY=MUI-I+J
DO 714 I0=1,2*IELEM
II=IPBBX(I0,I)
IF(II.EQ.0) GO TO 715
DO 713 J0=1,2*IELEM
JJ=IPBBX(J0,J)
IF(II.EQ.JJ) C11X(KEY)=C11X(KEY)+BBX(I0,I)*BBX(J0,J)/TTF(II)
713 CONTINUE
714 CONTINUE
715 CONTINUE
MUIM1=MUI
716 CONTINUE
RETURN
END
*
SUBROUTINE TRIDXY(NBMIX,IELEM,ICOL,NEL,LL4F,LL4X,LL4Y,MAT,VOL,YY,
1 KN,QFR,XSGD,MUY,IPBBY,LC,R,BBY,TTF,AY,C11Y)
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER NBMIX,IELEM,ICOL,NEL,LL4F,LL4X,LL4Y,MAT(NEL),
1 KN(NEL*(1+6*IELEM**2)),MUY(LL4Y),IPBBY(2*IELEM,LL4Y),LC
REAL VOL(NEL),YY(NEL),QFR(6*NEL),XSGD(NBMIX,4),R(LC,LC),TTF(LL4F),
1 BBY(2*IELEM,LL4Y),AY(*),C11Y(*)
*----
* Y-ORIENTED COUPLINGS
*----
NUM1=0
NUM2=0
DO 240 IE=1,NEL
L=MAT(IE)
IF(L.EQ.0) GO TO 240
VOL0=VOL(IE)
IF(VOL0.EQ.0.0) GO TO 230
DY=YY(IE)
*
DO 195 K3=0,IELEM-1
DO 190 K1=0,IELEM-1
KN1=KN(NUM1+2+2*IELEM**2+K3*IELEM+K1)
KN2=KN(NUM1+2+3*IELEM**2+K3*IELEM+K1)
INY1=ABS(KN1)-LL4F-LL4X
INY2=ABS(KN2)-LL4F-LL4X
IF(KN1.NE.0) THEN
KEY=MUY(INY1)
AY(KEY)=AY(KEY)-VOL0*R(1,1)*XSGD(L,2)-QFR(NUM2+3)
ENDIF
IF(KN2.NE.0) THEN
KEY=MUY(INY2)
AY(KEY)=AY(KEY)-VOL0*R(IELEM+1,IELEM+1)*XSGD(L,2)
1 -QFR(NUM2+4)
ENDIF
IF((ICOL.NE.2).AND.(KN1.NE.0).AND.(KN2.NE.0)) THEN
IF(INY2.GT.INY1) KEY=MUY(INY2)-INY2+INY1
IF(INY2.LE.INY1) KEY=MUY(INY1)-INY1+INY2
SG=REAL(SIGN(1,KN1)*SIGN(1,KN2))
IF(INY1.EQ.INY2) SG=2.0*SG
AY(KEY)=AY(KEY)-SG*VOL0*R(IELEM+1,1)*XSGD(L,2)
ENDIF
190 CONTINUE
195 CONTINUE
230 NUM1=NUM1+1+6*IELEM**2
NUM2=NUM2+6
240 CONTINUE
*
DO 212 I0=1,MUY(LL4Y)
C11Y(I0)=-AY(I0)
212 CONTINUE
MUIM1=0
DO 216 I=1,LL4Y
MUI=MUY(I)
DO 215 J=I-(MUI-MUIM1)+1,I
KEY=MUI-I+J
DO 214 I0=1,2*IELEM
II=IPBBY(I0,I)
IF(II.EQ.0) GO TO 215
DO 213 J0=1,2*IELEM
JJ=IPBBY(J0,J)
IF(II.EQ.JJ) C11Y(KEY)=C11Y(KEY)+BBY(I0,I)*BBY(J0,J)/TTF(II)
213 CONTINUE
214 CONTINUE
215 CONTINUE
MUIM1=MUI
216 CONTINUE
RETURN
END
*
SUBROUTINE TRIDXZ(NBMIX,IELEM,ICOL,NEL,LL4F,LL4X,LL4Y,LL4Z,MAT,
1 VOL,ZZ,KN,QFR,XSGD,MUZ,IPBBZ,LC,R,BBZ,TTF,AZ,C11Z)
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER NBMIX,IELEM,ICOL,NEL,LL4F,LL4X,LL4Y,LL4Z,MAT(NEL),
1 KN(NEL*(1+6*IELEM**2)),MUZ(LL4Z),IPBBZ(2*IELEM,LL4Z),LC
REAL VOL(NEL),ZZ(NEL),QFR(6*NEL),XSGD(NBMIX,4),R(LC,LC),TTF(LL4F),
1 BBZ(2*IELEM,LL4Z),AZ(*),C11Z(*)
*----
* Z-ORIENTED COUPLINGS
*----
NUM1=0
NUM2=0
DO 340 IE=1,NEL
L=MAT(IE)
IF(L.EQ.0) GO TO 340
VOL0=VOL(IE)
IF(VOL0.EQ.0.0) GO TO 330
DZ=ZZ(IE)
*
DO 295 K2=0,IELEM-1
DO 290 K1=0,IELEM-1
KN1=KN(NUM1+2+4*IELEM**2+K2*IELEM+K1)
KN2=KN(NUM1+2+5*IELEM**2+K2*IELEM+K1)
INZ1=ABS(KN1)-LL4F-LL4X-LL4Y
INZ2=ABS(KN2)-LL4F-LL4X-LL4Y
IF(KN1.NE.0) THEN
KEY=MUZ(INZ1)
AZ(KEY)=AZ(KEY)-VOL0*R(1,1)*XSGD(L,3)-QFR(NUM2+5)
ENDIF
IF(KN2.NE.0) THEN
KEY=MUZ(INZ2)
AZ(KEY)=AZ(KEY)-VOL0*R(IELEM+1,IELEM+1)*XSGD(L,3)
1 -QFR(NUM2+6)
ENDIF
IF((ICOL.NE.2).AND.(KN1.NE.0).AND.(KN2.NE.0)) THEN
IF(INZ2.GT.INZ1) KEY=MUZ(INZ2)-INZ2+INZ1
IF(INZ2.LE.INZ1) KEY=MUZ(INZ1)-INZ1+INZ2
SG=REAL(SIGN(1,KN1)*SIGN(1,KN2))
IF(INZ1.EQ.INZ2) SG=2.0*SG
AZ(KEY)=AZ(KEY)-SG*VOL0*R(IELEM+1,1)*XSGD(L,3)
ENDIF
290 CONTINUE
295 CONTINUE
330 NUM1=NUM1+1+6*IELEM**2
NUM2=NUM2+6
340 CONTINUE
*
DO 312 I0=1,MUZ(LL4Z)
C11Z(I0)=-AZ(I0)
312 CONTINUE
MUIM1=0
DO 316 I=1,LL4Z
MUI=MUZ(I)
DO 315 J=I-(MUI-MUIM1)+1,I
KEY=MUI-I+J
DO 314 I0=1,2*IELEM
II=IPBBZ(I0,I)
IF(II.EQ.0) GO TO 315
DO 313 J0=1,2*IELEM
JJ=IPBBZ(J0,J)
IF(II.EQ.JJ) C11Z(KEY)=C11Z(KEY)+BBZ(I0,I)*BBZ(J0,J)/TTF(II)
313 CONTINUE
314 CONTINUE
315 CONTINUE
MUIM1=MUI
316 CONTINUE
RETURN
END
|