summaryrefslogtreecommitdiff
path: root/Trivac/src/TRIDCO.f
blob: cfa4e0dce050ab21929d645f62955ba97dc6cb23 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
*DECK TRIDCO
      SUBROUTINE TRIDCO (IELEM,IR,NEL,K,VOL0,MAT,DIF,DDF,XX,YY,ZZ,DD,KN,
     1 QFR,CYLIND,IPR,A)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Compute the derivative or variation of mesh centered finite difference
* coefficients in element K.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IELEM   degree of the polynomial basis: =1 (linear/finite
*         differences); =2 (parabolic); =3 (cubic); =4 (quartic).
* IR      first dimension of matrix DIF.
* NEL     total number of finite elements.
* K       index of finite element under consideration.
* VOL0    volume of finite element under consideration.
* MAT     mixture index assigned to each element.
* DIF     directional diffusion coefficients
* DDF     derivative or variation of directional diffusion coefficients.
* XX      X-directed mesh spacings.
* YY      Y-directed mesh spacings.
* ZZ      Z-directed mesh spacings.
* DD      used with cylindrical geometry.
* KN      element-ordered unknown list:
*         .GT.0: neighbour index;
*         =-1:   void/albedo boundary condition;
*         =-2:   reflection boundary condition;
*         =-3:   ZERO flux boundary condition;
*         =-4:   SYME boundary condition (axial symmetry).
* QFR     element-ordered boundary conditions.
* CYLIND  cylindrical geometry flag (set with CYLIND  =.true.).
* IPR     type of coefficient calculation:
*         .eq.1 take derivative of MCFD coefficients;
*         .ge.2 take variation of MCFD coefficients.
*
*Parameters: output
* A       derivative or variation of mesh centered finite difference
*         coefficients.
*
*-----------------------------------------------------------------------
*
*----
*  SUBROUTINE ARGUMENTS
*----
      INTEGER IELEM,IR,NEL,K,MAT(NEL),KN(6),IPR
      REAL VOL0,DIF(IR,3),DDF(IR,3),XX(NEL),YY(NEL),ZZ(NEL),DD(NEL),
     1 QFR(6)
      LOGICAL CYLIND
      DOUBLE PRECISION A(6)
*----
*  LOCAL VARIABLES
*----
      DOUBLE PRECISION VHARM,DHARM,DIN,DOT
*
*     VARIATION FORMULA:
      VHARM(X1,X2,DIF1,DIF2,DDF1,DDF2)=2.0D0*((DIF1+DDF1)*(DIF2+DDF2)
     1 /(X1*(DIF2+DDF2)+X2*(DIF1+DDF1))-DIF1*DIF2/(X1*DIF2+X2*DIF1))
*     DERIVATIVE FORMULA:
      DHARM(X1,X2,DIF1,DIF2,DDF1,DDF2)=2.0D0*(X1*DIF2*DIF2*DDF1+
     1 X2*DIF1*DIF1*DDF2)/(X1*DIF2+X2*DIF1)**2
*
      DENOM=REAL((IELEM+1)*IELEM)
      L=MAT(K)
      DX=XX(K)
      DY=YY(K)
      DZ=ZZ(K)
      IF(CYLIND) THEN
         DIN=1.0D0-0.5D0*DX/DD(K)
         DOT=1.0D0+0.5D0*DX/DD(K)
      ELSE
         DIN=1.0D0
         DOT=1.0D0
      ENDIF
      KK1=KN(1)
      KK2=KN(2)
      KK3=KN(3)
      KK4=KN(4)
      KK5=KN(5)
      KK6=KN(6)
      IF(IPR.EQ.1) THEN
*        DERIVATIVE FORMULA.
*        X- SIDE:
         IF(KK1.GT.0) THEN
            A(1)=DHARM(DX,XX(KK1),DIF(L,1),DIF(MAT(KK1),1),DDF(L,1),
     1      DDF(MAT(KK1),1))*DIN*VOL0/DX
         ELSE IF(KK1.EQ.-1) THEN
            A(1)=DHARM(DX,DX,DIF(L,1),DX*QFR(1)/DENOM,DDF(L,1),0.0)
     1      *DIN*VOL0/DX
         ELSE IF(KK1.EQ.-2) THEN
            A(1)=0.0D0
         ELSE IF(KK1.EQ.-3) THEN
            A(1)=2.0D0*DDF(L,1)*DIN*VOL0/(DX*DX)
         ENDIF
*        X+ SIDE:
         IF(KK2.GT.0) THEN
            A(2)=DHARM(DX,XX(KK2),DIF(L,1),DIF(MAT(KK2),1),DDF(L,1),
     1      DDF(MAT(KK2),1))*DOT*VOL0/DX
         ELSE IF(KK2.EQ.-1) THEN
            A(2)=DHARM(DX,DX,DIF(L,1),DX*QFR(2)/DENOM,DDF(L,1),0.0)
     1      *DOT*VOL0/DX
         ELSE IF(KK2.EQ.-2) THEN
            A(2)=0.0D0
         ELSE IF(KK2.EQ.-3) THEN
            A(2)=2.0D0*DDF(L,1)*DOT*VOL0/(DX*DX)
         ELSE IF(KK2.EQ.-4) THEN
            IF(KK1.EQ.-4) CALL XABORT('TRIDCO: INCONSISTENT SYME (1).')
            A(2)=A(1)
         ENDIF
         IF(KK1.EQ.-4) THEN
            IF(KK2.EQ.-4) CALL XABORT('TRIDCO: INCONSISTENT SYME (2).')
            A(1)=A(2)
         ENDIF
*        Y- SIDE:
         IF(KK3.GT.0) THEN
            A(3)=DHARM(DY,YY(KK3),DIF(L,2),DIF(MAT(KK3),2),DDF(L,2),
     1      DDF(MAT(KK3),2))*VOL0/DY
         ELSE IF(KK3.EQ.-1) THEN
            A(3)=DHARM(DY,DY,DIF(L,2),DY*QFR(3)/DENOM,DDF(L,2),0.0)
     1      *VOL0/DY
         ELSE IF(KK3.EQ.-2) THEN
            A(3)=0.0D0
         ELSE IF(KK3.EQ.-3) THEN
            A(3)=2.0D0*DDF(L,2)*VOL0/(DY*DY)
         ENDIF
*        Y+ SIDE:
         IF(KK4.GT.0) THEN
            A(4)=DHARM(DY,YY(KK4),DIF(L,2),DIF(MAT(KK4),2),DDF(L,2),
     1      DDF(MAT(KK4),2))*VOL0/DY
         ELSE IF(KK4.EQ.-1) THEN
            A(4)=DHARM(DY,DY,DIF(L,2),DY*QFR(4)/DENOM,DDF(L,2),0.0)
     1      *VOL0/DY
         ELSE IF(KK4.EQ.-2) THEN
            A(4)=0.0D0
         ELSE IF(KK4.EQ.-3) THEN
            A(4)=2.0D0*DDF(L,2)*VOL0/(DY*DY)
         ELSE IF(KK4.EQ.-4) THEN
            IF(KK3.EQ.-4) CALL XABORT('TRIDCO: INCONSISTENT SYME (3).')
            A(4)=A(3)
         ENDIF
         IF(KK3.EQ.-4) THEN
            IF(KK4.EQ.-4) CALL XABORT('TRIDCO: INCONSISTENT SYME (4).')
            A(3)=A(4)
         ENDIF
*        Z- SIDE:
         IF(KK5.GT.0) THEN
            A(5)=DHARM(DZ,ZZ(KK5),DIF(L,3),DIF(MAT(KK5),3),DDF(L,3),
     1      DDF(MAT(KK5),3))*VOL0/DZ
         ELSE IF(KK5.EQ.-1) THEN
            A(5)=DHARM(DZ,DZ,DIF(L,3),DZ*QFR(5)/DENOM,DDF(L,3),0.0)
     1      *VOL0/DZ
         ELSE IF(KK5.EQ.-2) THEN
            A(5)=0.0D0
         ELSE IF(KK5.EQ.-3) THEN
            A(5)=2.0D0*DDF(L,3)*VOL0/(DZ*DZ)
         ENDIF
*        Z+ SIDE:
         IF(KK6.GT.0) THEN
            A(6)=DHARM(DZ,ZZ(KK6),DIF(L,3),DIF(MAT(KK6),3),DDF(L,3),
     1      DDF(MAT(KK6),3))*VOL0/DZ
         ELSE IF(KK6.EQ.-1) THEN
            A(6)=DHARM(DZ,DZ,DIF(L,3),DZ*QFR(6)/DENOM,DDF(L,3),0.0)
     1      *VOL0/DZ
         ELSE IF(KK6.EQ.-2) THEN
            A(6)=0.0D0
         ELSE IF(KK6.EQ.-3) THEN
            A(6)=2.0D0*DDF(L,3)*VOL0/(DZ*DZ)
         ELSE IF(KK6.EQ.-4) THEN
            IF(KK5.EQ.-4) CALL XABORT('TRIDCO: INCONSISTENT SYME (5).')
            A(6)=A(5)
         ENDIF
         IF(KK5.EQ.-4) THEN
            IF(KK6.EQ.-4) CALL XABORT('TRIDCO: INCONSISTENT SYME (6).')
            A(5)=A(6)
         ENDIF
      ELSE
*        VARIATION FORMULA.
*        X- SIDE:
         IF(KK1.GT.0) THEN
            A(1)=VHARM(DX,XX(KK1),DIF(L,1),DIF(MAT(KK1),1),DDF(L,1),
     1      DDF(MAT(KK1),1))*DIN*VOL0/DX
         ELSE IF(KK1.EQ.-1) THEN
            A(1)=VHARM(DX,DX,DIF(L,1),DX*QFR(1)/DENOM,DDF(L,1),0.0)
     1      *DIN*VOL0/DX
         ELSE IF(KK1.EQ.-2) THEN
            A(1)=0.0D0
         ELSE IF(KK1.EQ.-3) THEN
            A(1)=2.0D0*DDF(L,1)*DIN*VOL0/(DX*DX)
         ENDIF
*        X+ SIDE:
         IF(KK2.GT.0) THEN
            A(2)=VHARM(DX,XX(KK2),DIF(L,1),DIF(MAT(KK2),1),DDF(L,1),
     1      DDF(MAT(KK2),1))*DOT*VOL0/DX
         ELSE IF(KK2.EQ.-1) THEN
            A(2)=VHARM(DX,DX,DIF(L,1),DX*QFR(2)/DENOM,DDF(L,1),0.0)
     1      *DOT*VOL0/DX
         ELSE IF(KK2.EQ.-2) THEN
            A(2)=0.0D0
         ELSE IF(KK2.EQ.-3) THEN
            A(2)=2.0D0*DDF(L,1)*DOT*VOL0/(DX*DX)
         ELSE IF(KK2.EQ.-4) THEN
            IF(KK1.EQ.-4) CALL XABORT('TRIDCO: INCONSISTENT SYME (7).')
            A(2)=A(1)
         ENDIF
         IF(KK1.EQ.-4) THEN
            IF(KK2.EQ.-4) CALL XABORT('TRIDCO: INCONSISTENT SYME (8).')
            A(1)=A(2)
         ENDIF
*        Y- SIDE:
         IF(KK3.GT.0) THEN
            A(3)=VHARM(DY,YY(KK3),DIF(L,2),DIF(MAT(KK3),2),DDF(L,2),
     1      DDF(MAT(KK3),2))*VOL0/DY
         ELSE IF(KK3.EQ.-1) THEN
            A(3)=VHARM(DY,DY,DIF(L,2),DY*QFR(3)/DENOM,DDF(L,2),0.0)
     1      *VOL0/DY
         ELSE IF(KK3.EQ.-2) THEN
            A(3)=0.0D0
         ELSE IF(KK3.EQ.-3) THEN
            A(3)=2.0D0*DDF(L,2)*VOL0/(DY*DY)
         ENDIF
*        Y+ SIDE:
         IF(KK4.GT.0) THEN
            A(4)=VHARM(DY,YY(KK4),DIF(L,2),DIF(MAT(KK4),2),DDF(L,2),
     1      DDF(MAT(KK4),2))*VOL0/DY
         ELSE IF(KK4.EQ.-1) THEN
            A(4)=VHARM(DY,DY,DIF(L,2),DY*QFR(4)/DENOM,DDF(L,2),0.0)
     1      *VOL0/DY
         ELSE IF(KK4.EQ.-2) THEN
            A(4)=0.0D0
         ELSE IF(KK4.EQ.-3) THEN
            A(4)=2.0D0*DDF(L,2)*VOL0/(DY*DY)
         ELSE IF(KK4.EQ.-4) THEN
            IF(KK3.EQ.-4) CALL XABORT('TRIDCO: INCONSISTENT SYME (9).')
            A(4)=A(3)
         ENDIF
         IF(KK3.EQ.-4) THEN
            IF(KK4.EQ.-4) CALL XABORT('TRIDCO: INCONSISTENT SYME (10).')
            A(3)=A(4)
         ENDIF
*        Z- SIDE:
         IF(KK5.GT.0) THEN
            A(5)=VHARM(DZ,ZZ(KK5),DIF(L,3),DIF(MAT(KK5),3),DDF(L,3),
     1      DDF(MAT(KK5),3))*VOL0/DZ
         ELSE IF(KK5.EQ.-1) THEN
            A(5)=VHARM(DZ,DZ,DIF(L,3),DZ*QFR(5)/DENOM,DDF(L,3),0.0)
     1      *VOL0/DZ
         ELSE IF(KK5.EQ.-2) THEN
            A(5)=0.0D0
         ELSE IF(KK5.EQ.-3) THEN
            A(5)=2.0D0*DDF(L,3)*VOL0/(DZ*DZ)
         ENDIF
*        Z+ SIDE:
         IF(KK6.GT.0) THEN
            A(6)=VHARM(DZ,ZZ(KK6),DIF(L,3),DIF(MAT(KK6),3),DDF(L,3),
     1      DDF(MAT(KK6),3))*VOL0/DZ
         ELSE IF(KK6.EQ.-1) THEN
            A(6)=VHARM(DZ,DZ,DIF(L,3),DZ*QFR(6)/DENOM,DDF(L,3),0.0)
     1      *VOL0/DZ
         ELSE IF(KK6.EQ.-2) THEN
            A(6)=0.0D0
         ELSE IF(KK6.EQ.-3) THEN
            A(6)=2.0D0*DDF(L,3)*VOL0/(DZ*DZ)
         ELSE IF(KK6.EQ.-4) THEN
            IF(KK5.EQ.-4) CALL XABORT('TRIDCO: INCONSISTENT SYME (11).')
            A(6)=A(5)
         ENDIF
         IF(KK5.EQ.-4) THEN
            IF(KK6.EQ.-4) CALL XABORT('TRIDCO: INCONSISTENT SYME (12).')
            A(5)=A(6)
         ENDIF
      ENDIF
      RETURN
      END