1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
|
*DECK TRICYL
SUBROUTINE TRICYL(MAXMIX,IMPX,ICHX,IDIM,LX,LY,LZ,XX,YY,ZZ,VOL,
1 MAT,NCODE,ZALB,NR0,RR0,XR0,ANG,SGD,QFR)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Compute the albedo term corresponding to a cylinderized boundary
* in Cartesian geometry.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): R. Roy
*
*Parameters: input
* MAXMIX first dimension of matrix SGD.
* IMPX print parameter (equal to zero for no print).
* ICHX type of finite element approximation:
* =1 primal (Lagrangian) finite elements or mesh corner finit
* differences;
* =2 dual finite elements;
* =3 or 4 nodal collocation method or mesh centered finite
* differences.
* IDIM number of dimensions.
* LX number of elements along the X axis.
* LY number of elements along the Y axis.
* LZ number of elements along the Z axis.
* XX X-directed mesh spacings.
* YY Y-directed mesh spacings.
* ZZ Z-directed mesh spacings.
* VOL volume of each element.
* MAT mixture index of each element.
* NCODE type of boundary condition applied on each side
* (i=1: X- i=2: X+ i=3: Y- i=4: Y+):
* NCODE(I)=1: VOID; NCODE(I)=2: REFL; NCODE(I)=5: SYME;
* NCODE(I)=7: ZERO; NCODE(I)=20: VOID on cylindrical boundary.
* ZALB albedo function corresponding to boundary condition 'VOID' on
* each side (ZALB(I)=0.0 by default).
* NR0 number of radii.
* RR0 radii.
* XR0 coordinates on principal axis.
* ANG angles for applying circular correction.
* SGD directional diffusion coefficients per mixture.
*
*Parameters: output
* QFR boundary transmission factor.
*
*-----------------------------------------------------------------------
*
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER MAXMIX,IMPX,ICHX,IDIM,LX,LY,LZ,MAT(LX*LY*LZ),NCODE(6),NR0
REAL XX(LX*LY*LZ),YY(LX*LY*LZ),ZZ(LX*LY*LZ),VOL(LX*LY*LZ),
1 ZALB(6),RR0(NR0),XR0(NR0),ANG(NR0),SGD(MAXMIX,3),QFR(6*LX*LY*LZ)
*----
* LOCAL VARIABLES
*----
LOGICAL LL1
CHARACTER*4 CAXE(3)
REAL CENTER(3),CELEM(3)
REAL, DIMENSION(:), ALLOCATABLE :: XXX,YYY,ZZZ
DATA CAXE / '(X) ', '(Y) ', '(Z) ' /
*----
* SCRATCH STORAGE ALLOCATION
*----
ALLOCATE(XXX(LX+1),YYY(LY+1),ZZZ(LZ+1))
*----
* DETERMINE CARTESIAN COORDINATES
*----
KEL=0
ZZZ(1)=0.0
DO 12 K0=1,LZ
YYY(1)=0.0
DO 11 K1=1,LY
XXX(1)=0.0
DO 10 K2=1,LX
KEL=KEL+1
IF(MAT(KEL).LE.0) GO TO 10
XXX(K2+1)=XXX(K2)+XX(KEL)
YYY(K1+1)=YYY(K1)+YY(KEL)
ZZZ(K0+1)=ZZZ(K0)+ZZ(KEL)
10 CONTINUE
11 CONTINUE
12 CONTINUE
*
CALL TRIKAX (IDIM,NCODE,XXX,YYY,ZZZ,LX,LY,LZ,IAXIS,CENTER)
IF((IAXIS.GT.0).AND.(IMPX.GT.0)) THEN
WRITE(6,600) CAXE(IAXIS),
1 CAXE(MOD(IAXIS ,3)+1), CENTER(MOD(IAXIS ,3)+1),
2 CAXE(MOD(IAXIS+1,3)+1), CENTER(MOD(IAXIS+1,3)+1)
ENDIF
IF(NR0.LE.0) CALL XABORT('TRICYL: B.C. RADIUS NOT DEFINED.')
*
NUM2=0
KEL=0
DO 152 K0=1,LZ
DO 151 K1=1,LY
DO 150 K2=1,LX
KEL=KEL+1
L=MAT(KEL)
IF(L.LE.0) GO TO 150
*
IF(K2.EQ.1) THEN
LL1=.TRUE.
ELSE
LL1=(MAT(KEL-1).EQ.0)
ENDIF
IF(LL1.AND.(NCODE(1).EQ.20)) THEN
CELEM(1)=XXX(K2)
CELEM(2)=0.5*(YYY(K1+1)+YYY(K1))
CELEM(3)=0.5*(ZZZ(K0+1)+ZZZ(K0))
CALL TRIZNR(IMPX,1,CENTER,CELEM,IAXIS,NR0,RR0,XR0,ANG,QFRI,
1 QTRI)
IF(ICHX.EQ.2) THEN
QFR(NUM2+1)=(SGD(L,1)*ZALB(1)+QTRI)/(SGD(L,1)*QFRI)
ELSE
QFR(NUM2+1)=SGD(L,1)*QFRI*ZALB(1)/(SGD(L,1)+QTRI*ZALB(1))
ENDIF
IF((ICHX.EQ.1).OR.(ICHX.EQ.2)) THEN
QFR(NUM2+1)=QFR(NUM2+1)*VOL(KEL)/(XXX(K2+1)-XXX(K2))
ENDIF
ENDIF
*
IF(K2.EQ.LX) THEN
LL1=.TRUE.
ELSE
LL1=(MAT(KEL+1).EQ.0)
ENDIF
IF(LL1.AND.(NCODE(2).EQ.20)) THEN
CELEM(1)=XXX(K2+1)
CELEM(2)=0.5*(YYY(K1+1)+YYY(K1))
CELEM(3)=0.5*(ZZZ(K0+1)+ZZZ(K0))
CALL TRIZNR(IMPX,2,CENTER,CELEM,IAXIS,NR0,RR0,XR0,ANG,QFRI,
1 QTRI)
IF(ICHX.EQ.2) THEN
QFR(NUM2+2)=(SGD(L,1)*ZALB(2)+QTRI)/(SGD(L,1)*QFRI)
ELSE
QFR(NUM2+2)=SGD(L,1)*QFRI*ZALB(2)/(SGD(L,1)+QTRI*ZALB(2))
ENDIF
IF((ICHX.EQ.1).OR.(ICHX.EQ.2)) THEN
QFR(NUM2+2)=QFR(NUM2+2)*VOL(KEL)/(XXX(K2+1)-XXX(K2))
ENDIF
ENDIF
*
IF(K1.EQ.1) THEN
LL1=.TRUE.
ELSE
LL1=(MAT(KEL-LX).EQ.0)
ENDIF
IF(LL1.AND.(NCODE(3).EQ.20)) THEN
CELEM(1)=0.5*(XXX(K2+1)+XXX(K2))
CELEM(2)=YYY(K1)
CELEM(3)=0.5*(ZZZ(K0+1)+ZZZ(K0))
CALL TRIZNR(IMPX,3,CENTER,CELEM,IAXIS,NR0,RR0,XR0,ANG,QFRI,
1 QTRI)
IF(ICHX.EQ.2) THEN
QFR(NUM2+3)=(SGD(L,2)*ZALB(3)+QTRI)/(SGD(L,2)*QFRI)
ELSE
QFR(NUM2+3)=SGD(L,2)*QFRI*ZALB(3)/(SGD(L,2)+QTRI*ZALB(3))
ENDIF
IF((ICHX.EQ.1).OR.(ICHX.EQ.2)) THEN
QFR(NUM2+3)=QFR(NUM2+3)*VOL(KEL)/(YYY(K1+1)-YYY(K1))
ENDIF
ENDIF
*
IF(K1.EQ.LY) THEN
LL1=.TRUE.
ELSE
LL1=(MAT(KEL+LX).EQ.0)
ENDIF
IF(LL1.AND.(NCODE(4).EQ.20)) THEN
CELEM(1)=0.5*(XXX(K2+1)+XXX(K2))
CELEM(2)=YYY(K1+1)
CELEM(3)=0.5*(ZZZ(K0+1)+ZZZ(K0))
CALL TRIZNR(IMPX,4,CENTER,CELEM,IAXIS,NR0,RR0,XR0,ANG,QFRI,
1 QTRI)
IF(ICHX.EQ.2) THEN
QFR(NUM2+4)=(SGD(L,2)*ZALB(4)+QTRI)/(SGD(L,2)*QFRI)
ELSE
QFR(NUM2+4)=SGD(L,2)*QFRI*ZALB(4)/(SGD(L,2)+QTRI*ZALB(4))
ENDIF
IF((ICHX.EQ.1).OR.(ICHX.EQ.2)) THEN
QFR(NUM2+4)=QFR(NUM2+4)*VOL(KEL)/(YYY(K1+1)-YYY(K1))
ENDIF
ENDIF
*
IF(K0.EQ.1) THEN
LL1=.TRUE.
ELSE
LL1=(MAT(KEL-LX*LY).EQ.0)
ENDIF
IF(LL1.AND.(NCODE(5).EQ.20)) THEN
CELEM(1)=0.5*(XXX(K2+1)+XXX(K2))
CELEM(2)=0.5*(YYY(K1+1)+YYY(K1))
CELEM(3)=ZZZ(K0)
CALL TRIZNR(IMPX,5,CENTER,CELEM,IAXIS,NR0,RR0,XR0,ANG,QFRI,
1 QTRI)
IF(ICHX.EQ.2) THEN
QFR(NUM2+5)=(SGD(L,3)*ZALB(5)+QTRI)/(SGD(L,3)*QFRI)
ELSE
QFR(NUM2+5)=SGD(L,3)*QFRI*ZALB(5)/(SGD(L,3)+QTRI*ZALB(5))
ENDIF
IF((ICHX.EQ.1).OR.(ICHX.EQ.2)) THEN
QFR(NUM2+5)=QFR(NUM2+5)*VOL(KEL)/(ZZZ(K0+1)-ZZZ(K0))
ENDIF
ENDIF
*
IF(K0.EQ.LZ) THEN
LL1=.TRUE.
ELSE
LL1=(MAT(KEL+LX*LY).EQ.0)
ENDIF
IF(LL1.AND.(NCODE(6).EQ.20)) THEN
CELEM(1)=0.5*(XXX(K2+1)+XXX(K2))
CELEM(2)=0.5*(YYY(K1+1)+YYY(K1))
CELEM(3)=ZZZ(K0+1)
CALL TRIZNR(IMPX,6,CENTER,CELEM,IAXIS,NR0,RR0,XR0,ANG,QFRI,
1 QTRI)
IF(ICHX.EQ.2) THEN
QFR(NUM2+6)=(SGD(L,3)*ZALB(6)+QTRI)/(SGD(L,3)*QFRI)
ELSE
QFR(NUM2+6)=SGD(L,3)*QFRI*ZALB(6)/(SGD(L,3)+QTRI*ZALB(6))
ENDIF
IF((ICHX.EQ.1).OR.(ICHX.EQ.2)) THEN
QFR(NUM2+6)=QFR(NUM2+6)*VOL(KEL)/(ZZZ(K0+1)-ZZZ(K0))
ENDIF
ENDIF
*
IF((NCODE(1).EQ.5).AND.(NCODE(2).EQ.20).AND.(LX.EQ.1)) THEN
QFR(NUM2+1)=QFR(NUM2+2)
ELSE IF((NCODE(1).EQ.20).AND.(NCODE(2).EQ.5).AND.(LX.EQ.1)) THEN
QFR(NUM2+2)=QFR(NUM2+1)
ENDIF
IF((NCODE(3).EQ.5).AND.(NCODE(4).EQ.20).AND.(LY.EQ.1)) THEN
QFR(NUM2+3)=QFR(NUM2+4)
ELSE IF((NCODE(3).EQ.20).AND.(NCODE(4).EQ.5).AND.(LY.EQ.1)) THEN
QFR(NUM2+4)=QFR(NUM2+3)
ENDIF
IF((NCODE(5).EQ.5).AND.(NCODE(6).EQ.20).AND.(LZ.EQ.1)) THEN
QFR(NUM2+5)=QFR(NUM2+6)
ELSE IF((NCODE(5).EQ.20).AND.(NCODE(6).EQ.5).AND.(LZ.EQ.1)) THEN
QFR(NUM2+6)=QFR(NUM2+5)
ENDIF
*
NUM2=NUM2+6
150 CONTINUE
151 CONTINUE
152 CONTINUE
*
IF(IMPX.GE.2) THEN
WRITE (6,610)
NUM2=0
DO 160 KEL=1,LX*LY*LZ
IF(MAT(KEL).LE.0) GO TO 160
WRITE (6,620) KEL,(QFR(NUM2+I),I=1,6)
NUM2=NUM2+6
160 CONTINUE
ENDIF
*----
* SCRATCH STORAGE DEALLOCATION
*----
DEALLOCATE(XXX,YYY,ZZZ)
RETURN
*
600 FORMAT (/52H TRICYL: CYLINDRICAL ALBEDO BOUNDARY CONDITION ON A ,
1 17HCYLINDER OF AXIS ,A4/
2 9X,12HCENTER IS ( ,A4,1H=,1P,E15.7,3H , ,A4,1H=,E15.7 ,1H) )
610 FORMAT(///53H VOID BOUNDARY CONDITION WITH CYLINDRICAL CORRECTION:
1 //8H ELEMENT,5X,3HQFR)
620 FORMAT(1X,I6,4X,1P,6E11.2)
END
|