1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
|
*DECK TRICO
SUBROUTINE TRICO (IELEM,IR,NEL,K,VOL0,MAT,DIF,XX,YY,ZZ,DD,KN,QFR,
1 CYLIND,A)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Compute the mesh centered finite difference coefficients in element K.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IELEM degree of the polynomial basis: =1 (linear/finite
* differences); =2 (parabolic); =3 (cubic); =4 (quartic).
* IR first dimension of matrix DIF.
* NEL total number of finite elements.
* K index of finite element under consideration.
* VOL0 volume of finite element under consideration.
* MAT mixture index assigned to each element.
* DIF directional diffusion coefficients.
* XX X-directed mesh spacings.
* YY Y-directed mesh spacings.
* ZZ Z-directed mesh spacings.
* DD used with cylindrical geometry.
* KN element-ordered unknown list:
* .GT.0: neighbour index;
* =-1: void/albedo boundary condition;
* =-2: reflection boundary condition;
* =-3: ZERO flux boundary condition;
* =-4: SYME boundary condition (axial symmetry).
* QFR element-ordered boundary conditions.
* CYLIND cylindrical geometry flag (set with CYLIND=.true.).
*
*Parameters: output
* A mesh centered finite difference coefficients.
*
*-----------------------------------------------------------------------
*
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER IELEM,IR,NEL,K,MAT(NEL),KN(6)
REAL VOL0,DIF(IR,3),XX(NEL),YY(NEL),ZZ(NEL),DD(NEL),QFR(6)
LOGICAL CYLIND
DOUBLE PRECISION A(6)
*----
* LOCAL VARIABLES
*----
DOUBLE PRECISION DHARM,DIN,DOT
DHARM(X1,X2,DIF1,DIF2)=2.0D0*DIF1*DIF2/(X1*DIF2+X2*DIF1)
*
DENOM=REAL((IELEM+1)*IELEM)
L=MAT(K)
DX=XX(K)
DY=YY(K)
DZ=ZZ(K)
IF(CYLIND) THEN
DIN=1.0D0-0.5D0*DX/DD(K)
DOT=1.0D0+0.5D0*DX/DD(K)
ELSE
DIN=1.0D0
DOT=1.0D0
ENDIF
KK1=KN(1)
KK2=KN(2)
KK3=KN(3)
KK4=KN(4)
KK5=KN(5)
KK6=KN(6)
* X- SIDE:
IF(KK1.GT.0) THEN
A(1)=DHARM(DX,XX(KK1),DIF(L,1),DIF(MAT(KK1),1))*DIN*VOL0/DX
ELSE IF(KK1.EQ.-1) THEN
A(1)=DHARM(DX,DX,DIF(L,1),DX*QFR(1)/DENOM)*DIN*VOL0/DX
ELSE IF(KK1.EQ.-2) THEN
A(1)=0.0D0
ELSE IF(KK1.EQ.-3) THEN
A(1)=2.0D0*DHARM(DX,DX,DIF(L,1),DIF(L,1))*DIN*VOL0/DX
ENDIF
* X+ SIDE:
IF(KK2.GT.0) THEN
A(2)=DHARM(DX,XX(KK2),DIF(L,1),DIF(MAT(KK2),1))*DOT*VOL0/DX
ELSE IF(KK2.EQ.-1) THEN
A(2)=DHARM(DX,DX,DIF(L,1),DX*QFR(2)/DENOM)*DOT*VOL0/DX
ELSE IF(KK2.EQ.-2) THEN
A(2)=0.0D0
ELSE IF(KK2.EQ.-3) THEN
A(2)=2.0D0*DHARM(DX,DX,DIF(L,1),DIF(L,1))*DOT*VOL0/DX
ELSE IF(KK2.EQ.-4) THEN
IF(KK1.EQ.-4) CALL XABORT('TRICO: INCONSISTENT SYME (1).')
A(2)=A(1)
ENDIF
IF(KK1.EQ.-4) THEN
IF(KK2.EQ.-4) CALL XABORT('TRICO: INCONSISTENT SYME (2).')
A(1)=A(2)
ENDIF
* Y- SIDE:
IF(KK3.GT.0) THEN
A(3)=DHARM(DY,YY(KK3),DIF(L,2),DIF(MAT(KK3),2))*VOL0/DY
ELSE IF(KK3.EQ.-1) THEN
A(3)=DHARM(DY,DY,DIF(L,2),DY*QFR(3)/DENOM)*VOL0/DY
ELSE IF(KK3.EQ.-2) THEN
A(3)=0.0D0
ELSE IF(KK3.EQ.-3) THEN
A(3)=2.0D0*DHARM(DY,DY,DIF(L,2),DIF(L,2))*VOL0/DY
ENDIF
* Y+ SIDE:
IF(KK4.GT.0) THEN
A(4)=DHARM(DY,YY(KK4),DIF(L,2),DIF(MAT(KK4),2))*VOL0/DY
ELSE IF(KK4.EQ.-1) THEN
A(4)=DHARM(DY,DY,DIF(L,2),DY*QFR(4)/DENOM)*VOL0/DY
ELSE IF(KK4.EQ.-2) THEN
A(4)=0.0D0
ELSE IF(KK4.EQ.-3) THEN
A(4)=2.0D0*DHARM(DY,DY,DIF(L,2),DIF(L,2))*VOL0/DY
ELSE IF(KK4.EQ.-4) THEN
IF(KK3.EQ.-4) CALL XABORT('TRICO: INCONSISTENT SYME (3).')
A(4)=A(3)
ENDIF
IF(KK3.EQ.-4) THEN
IF(KK4.EQ.-4) CALL XABORT('TRICO: INCONSISTENT SYME (4).')
A(3)=A(4)
ENDIF
* Z- SIDE:
IF(KK5.GT.0) THEN
A(5)=DHARM(DZ,ZZ(KK5),DIF(L,3),DIF(MAT(KK5),3))*VOL0/DZ
ELSE IF(KK5.EQ.-1) THEN
A(5)=DHARM(DZ,DZ,DIF(L,3),DZ*QFR(5)/DENOM)*VOL0/DZ
ELSE IF(KK5.EQ.-2) THEN
A(5)=0.0D0
ELSE IF(KK5.EQ.-3) THEN
A(5)=2.0D0*DHARM(DZ,DZ,DIF(L,3),DIF(L,3))*VOL0/DZ
ENDIF
* Z+ SIDE:
IF(KK6.GT.0) THEN
A(6)=DHARM(DZ,ZZ(KK6),DIF(L,3),DIF(MAT(KK6),3))*VOL0/DZ
ELSE IF(KK6.EQ.-1) THEN
A(6)=DHARM(DZ,DZ,DIF(L,3),DZ*QFR(6)/DENOM)*VOL0/DZ
ELSE IF(KK6.EQ.-2) THEN
A(6)=0.0D0
ELSE IF(KK6.EQ.-3) THEN
A(6)=2.0D0*DHARM(DZ,DZ,DIF(L,3),DIF(L,3))*VOL0/DZ
ELSE IF(KK6.EQ.-4) THEN
IF(KK5.EQ.-4) CALL XABORT('TRICO: INCONSISTENT SYME (5).')
A(6)=A(5)
ENDIF
IF(KK5.EQ.-4) THEN
IF(KK6.EQ.-4) CALL XABORT('TRICO: INCONSISTENT SYME (6).')
A(5)=A(6)
ENDIF
RETURN
END
|