summaryrefslogtreecommitdiff
path: root/Trivac/src/TRICHH.f
blob: 5f46445327590dcced33c21012c1b8295f12cd21 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
*DECK TRICHH
      SUBROUTINE TRICHH(IMPX,MAXKN,NBLOS,LXH,LZ,IELEM,ISPLH,L4,LL4F,
     1 LL4W,LL4X,LL4Y,LL4Z,SIDE,ZZ,FRZ,IPERT,KN,V,H,MUW,MUX,MUY,MUZ,
     2 IPBBW,IPBBX,IPBBY,IPBBZ,BBW,BBX,BBY,BBZ,CTRAN)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Thomas-Raviart-Schneider (dual) finite element unknown numbering for
* ADI solution in a 3D hexagonal domain. Compute the storage info for
* ADI matrices in compressed diagonal storage mode. Compute the ADI
* permutation vectors. Compute the group-independent WB, XB, YB and ZB
* matrices.
*
*Copyright:
* Copyright (C) 2006 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IMPX    print parameter.
* MAXKN   number of components in KN.
* NBLOS   number of lozenges per direction in 3D with mesh-splitting.
* LXH     number of hexagons in a plane.
* LZ      number of elements along the Z axis.
* IELEM   degree of the Lagrangian finite elements: =1 (linear);
*         =2 (parabolic); =3 (cubic).
* ISPLH   mesh-splitting in 3*ISPLH**2 lozenges per hexagon.
* L4      total number of unknown (variational coefficients) per
*         energy group (order of system matrices).
* LL4F    exact number of flux unknowns.
* LL4W    exact number of W-directed current unknowns.
* LL4X    exact number of X-directed current unknowns.
* LL4Y    exact number of Y-directed current unknowns.
* LL4Z    exact number of Z-directed current unknowns.
* SIDE    side of an hexagon.
* ZZ      Z-directed mesh spacings.
* FRZ     volume fractions for the axial SYME boundary condition.
* IPERT   mixture permutation index.
* KN      ADI permutation indices for the volumes and currents.
* V       nodal coupling matrix matrix.
* H       Piolat (hexagonal) coupling matrix.
*
*Parameters: output
* MUW     W-directed compressed diagonal mode indices.
* MUX     X-directed compressed diagonal mode indices.
* MUY     Y-directed compressed diagonal mode indices.
* MUZ     Z-directed compressed diagonal mode indices.
* IPBBW   W-directed perdue storage indices.
* IPBBX   X-directed perdue storage indices.
* IPBBY   Y-directed perdue storage indices.
* IPBBZ   Z-directed perdue storage indices.
* BBW     W-directed flux-current matrices.
* BBX     X-directed flux-current matrices.
* BBY     Y-directed flux-current matrices.
* BBZ     Z-directed flux-current matrices.
* CTRAN   tranverse coupling Piolat unit matrix.
*
*-----------------------------------------------------------------------
*
*----
*  SUBROUTINE ARGUMENTS
*----
      INTEGER IMPX,MAXKN,NBLOS,LXH,LZ,IELEM,ISPLH,L4,IPERT(NBLOS),
     1 KN(NBLOS,MAXKN/NBLOS),LL4F,LL4W,LL4X,LL4Y,LL4Z,MUW(L4),
     2 MUX(L4),MUY(L4),MUZ(L4),IPBBW(2*IELEM,LL4W),IPBBX(2*IELEM,LL4X),
     3 IPBBY(2*IELEM,LL4Y),IPBBZ(2*IELEM,LL4Z)
      REAL SIDE,ZZ(3,NBLOS),FRZ(NBLOS),V(IELEM+1,IELEM),
     1 H(IELEM+1,IELEM),BBW(2*IELEM,LL4W),BBX(2*IELEM,LL4X),
     2 BBY(2*IELEM,LL4Y),BBZ(2*IELEM,LL4Z)
      DOUBLE PRECISION CTRAN((IELEM+1)*IELEM,(IELEM+1)*IELEM)
*----
*  LOCAL VARIABLES
*----
      DOUBLE PRECISION TTTT,DENOM,VOL0
*
      NELEH=(IELEM+1)*IELEM**2
      NELEZ=6*IELEM**2
      NBC=INT((SQRT(REAL((4*LXH-1)/3))+1.)/2.)
      IF(LL4F.GT.3*NBLOS*IELEM**3) CALL XABORT('TRICHH: BUG1.')
      IF(LL4W.GT.(2*NBLOS*IELEM+(2*NBC-1)*ISPLH*LZ)*IELEM**2)
     1 CALL XABORT('TRICHH: BUG2.')
*----
*  COMPUTE THE TRANVERSE COUPLING PIOLAT UNIT MATRIX
*----
      CTRAN(:(IELEM+1)*IELEM,:(IELEM+1)*IELEM)=0.0D0
      CNORM=SIDE*SIDE/SQRT(3.)
      I=0
      DO 22 JS=1,IELEM
      DO 21 JT=1,IELEM+1
      J=0
      I=I+1
      SSS=1.0
      DO 20 IT=1,IELEM
      DO 10 IS=1,IELEM+1
      J=J+1
      CTRAN(I,J)=SSS*CNORM*H(IS,JS)*H(JT,IT)
   10 CONTINUE
      SSS=-SSS
   20 CONTINUE
   21 CONTINUE
   22 CONTINUE
      IF(IMPX.GT.1) THEN
         WRITE(6,*) 'TRICHH: MATRIX CTRAN'
         DO 30 I=1,(IELEM+1)*IELEM
         WRITE(6,'(10(1X,1P,E12.4))') (CTRAN(I,J),J=1,(IELEM+1)*IELEM)
   30    CONTINUE
         WRITE(6,*) '  '
      ENDIF
*----
*  COMPUTE THE W-, X- ,Y- AND Z-ORIENTED SYSTEM BANDWIDTH VECTORS
*----
      MUW(:L4)=1
      MUX(:L4)=1
      MUY(:L4)=1
      MUZ(:L4)=1
      IPBBW(:2*IELEM,:LL4W)=0
      IPBBX(:2*IELEM,:LL4X)=0
      IPBBY(:2*IELEM,:LL4Y)=0
      IPBBZ(:2*IELEM,:LL4Z)=0
      NUM=0
      DO 80 KEL=1,NBLOS
      IF(IPERT(KEL).EQ.0) GO TO 80
      NUM=NUM+1
      DO 64 K5=0,1 ! TWO LOZENGES PER HEXAGON
      DO 63 K4=0,IELEM-1
      DO 62 K3=0,IELEM-1
      DO 61 K2=1,IELEM+1
      KNW1=KN(NUM,3+K5*NELEH+(K4*IELEM+K3)*(IELEM+1)+K2)
      KNX1=KN(NUM,3+(K5+2)*NELEH+(K4*IELEM+K3)*(IELEM+1)+K2)
      KNY1=KN(NUM,3+(K5+4)*NELEH+(K4*IELEM+K3)*(IELEM+1)+K2)
      INW1=ABS(KNW1)
      INX1=ABS(KNX1)-LL4W
      INY1=ABS(KNY1)-LL4W-LL4X
      DO 40 K1=1,IELEM+1
      KNW2=KN(NUM,3+K5*NELEH+(K4*IELEM+K3)*(IELEM+1)+K1)
      KNX2=KN(NUM,3+(K5+2)*NELEH+(K4*IELEM+K3)*(IELEM+1)+K1)
      KNY2=KN(NUM,3+(K5+4)*NELEH+(K4*IELEM+K3)*(IELEM+1)+K1)
      INW2=ABS(KNW2)
      INX2=ABS(KNX2)-LL4W
      INY2=ABS(KNY2)-LL4W-LL4X
      IF((KNW2.NE.0).AND.(KNW1.NE.0)) THEN
         MUW(INW1)=MAX(MUW(INW1),INW1-INW2+1)
         MUW(INW2)=MAX(MUW(INW2),INW2-INW1+1)
      ENDIF
      IF((KNX2.NE.0).AND.(KNX1.NE.0)) THEN
         MUX(INX1)=MAX(MUX(INX1),INX1-INX2+1)
         MUX(INX2)=MAX(MUX(INX2),INX2-INX1+1)
      ENDIF
      IF((KNY2.NE.0).AND.(KNY1.NE.0)) THEN
         MUY(INY1)=MAX(MUY(INY1),INY1-INY2+1)
         MUY(INY2)=MAX(MUY(INY2),INY2-INY1+1)
      ENDIF
   40 CONTINUE
      DO 60 K1=0,IELEM-1
      IF(V(K2,K1+1).EQ.0.0) GO TO 60
      IF(K5.EQ.0) THEN
         JND1=(NUM-1)*IELEM**3+K4*IELEM**2+K3*IELEM+K1+1
         JND2=(KN(NUM,1)-1)*IELEM**3+K4*IELEM**2+K3*IELEM+K1+1
         JND3=(KN(NUM,2)-1)*IELEM**3+K4*IELEM**2+K3*IELEM+K1+1
      ELSE
         JND1=(KN(NUM,1)-1)*IELEM**3+K4*IELEM**2+K1*IELEM+K3+1
         JND2=(KN(NUM,2)-1)*IELEM**3+K4*IELEM**2+K1*IELEM+K3+1
         JND3=(KN(NUM,3)-1)*IELEM**3+K4*IELEM**2+K1*IELEM+K3+1
      ENDIF
      IF(KNW1.NE.0) CALL TRINDX(JND1,IPBBW(1,INW1),2*IELEM)
      IF(KNX1.NE.0) CALL TRINDX(JND2,IPBBX(1,INX1),2*IELEM)
      IF(KNY1.NE.0) CALL TRINDX(JND3,IPBBY(1,INY1),2*IELEM)
   60 CONTINUE
   61 CONTINUE
   62 CONTINUE
   63 CONTINUE
   64 CONTINUE
      DO 73 K5=0,2 ! THREE LOZENGES PER HEXAGON
      DO 72 K2=0,IELEM-1
      DO 71 K1=0,IELEM-1
      KNZ1=KN(NUM,3+6*NELEH+2*K5*IELEM**2+K2*IELEM+K1+1)
      KNZ2=KN(NUM,3+6*NELEH+(2*K5+1)*IELEM**2+K2*IELEM+K1+1)
      INZ1=ABS(KNZ1)-LL4W-LL4X-LL4Y
      INZ2=ABS(KNZ2)-LL4W-LL4X-LL4Y
      IF((KNZ1.NE.0).AND.(KNZ2.NE.0)) THEN
         MUZ(INZ2)=MAX(MUZ(INZ2),INZ2-INZ1+1)
         MUZ(INZ1)=MAX(MUZ(INZ1),INZ1-INZ2+1)
      ENDIF
      DO 70 K3=0,IELEM-1
      IF(K5.EQ.0) THEN
         JND1=(NUM-1)*IELEM**3+K3*IELEM**2+K2*IELEM+K1+1
      ELSE
         JND1=(KN(NUM,K5)-1)*IELEM**3+K3*IELEM**2+K2*IELEM+K1+1
      ENDIF
      IF(KNZ1.NE.0) CALL TRINDX(JND1,IPBBZ(1,INZ1),2*IELEM)
      IF(KNZ2.NE.0) CALL TRINDX(JND1,IPBBZ(1,INZ2),2*IELEM)
   70 CONTINUE
   71 CONTINUE
   72 CONTINUE
   73 CONTINUE
   80 CONTINUE
*
      MUWMAX=0
      IIMAXW=0
      DO 90 I=1,LL4W
      MUWMAX=MAX(MUWMAX,MUW(I))
      IIMAXW=IIMAXW+MUW(I)
      MUW(I)=IIMAXW
   90 CONTINUE
      MUXMAX=0
      IIMAXX=0
      DO 100 I=1,LL4X
      MUXMAX=MAX(MUXMAX,MUX(I))
      IIMAXX=IIMAXX+MUX(I)
      MUX(I)=IIMAXX
  100 CONTINUE
      MUYMAX=0
      IIMAXY=0
      DO 110 I=1,LL4Y
      MUYMAX=MAX(MUYMAX,MUY(I))
      IIMAXY=IIMAXY+MUY(I)
      MUY(I)=IIMAXY
  110 CONTINUE
      MUZMAX=0
      IIMAXZ=0
      DO 120 I=1,LL4Z
      MUZMAX=MAX(MUZMAX,MUZ(I))
      IIMAXZ=IIMAXZ+MUZ(I)
      MUZ(I)=IIMAXZ
  120 CONTINUE
      IF(IMPX.GT.0) THEN
         WRITE (6,600) MUWMAX,MUXMAX,MUYMAX,MUZMAX
         WRITE (6,610) IIMAXW,IIMAXX,IIMAXY,IIMAXZ
      ENDIF
*----
*  COMPUTE THE FLUX-CURRENT COUPLING MATRICES WB, XB, YB AND ZB.
*----
      BBW(:2*IELEM,:LL4W)=0.0
      BBX(:2*IELEM,:LL4X)=0.0
      BBY(:2*IELEM,:LL4Y)=0.0
      BBZ(:2*IELEM,:LL4Z)=0.0
      TTTT=0.5D0*SQRT(3.D00)*SIDE*SIDE
      DENOM=0.5D0*SQRT(3.D00)*SIDE
      NUM=0
      DO 260 KEL=1,NBLOS
      IF(IPERT(KEL).EQ.0) GO TO 260
      NUM=NUM+1
      DZ=ZZ(1,IPERT(KEL))
      VOL0=TTTT*DZ*FRZ(KEL)
      DO 194 K5=0,1
      DO 193 K4=0,IELEM-1
      DO 192 K3=0,IELEM-1
      DO 191 K2=1,IELEM+1
      KNW1=KN(NUM,3+K5*NELEH+(K4*IELEM+K3)*(IELEM+1)+K2)
      KNX1=KN(NUM,3+(K5+2)*NELEH+(K4*IELEM+K3)*(IELEM+1)+K2)
      KNY1=KN(NUM,3+(K5+4)*NELEH+(K4*IELEM+K3)*(IELEM+1)+K2)
      INW1=ABS(KNW1)
      INX1=ABS(KNX1)-LL4W
      INY1=ABS(KNY1)-LL4W-LL4X
      DO 190 K1=0,IELEM-1
      IF(V(K2,K1+1).EQ.0.0) GO TO 190
      IF(K5.EQ.0) THEN
         SSS=(-1.0)**K1
         JND1=(NUM-1)*IELEM**3+K4*IELEM**2+K3*IELEM+K1+1
         JND2=(KN(NUM,1)-1)*IELEM**3+K4*IELEM**2+K3*IELEM+K1+1
         JND3=(KN(NUM,2)-1)*IELEM**3+K4*IELEM**2+K3*IELEM+K1+1
      ELSE
         SSS=1.0
         JND1=(KN(NUM,1)-1)*IELEM**3+K4*IELEM**2+K1*IELEM+K3+1
         JND2=(KN(NUM,2)-1)*IELEM**3+K4*IELEM**2+K1*IELEM+K3+1
         JND3=(KN(NUM,3)-1)*IELEM**3+K4*IELEM**2+K1*IELEM+K3+1
      ENDIF
      IF(KNW1.NE.0.0) THEN
         KK=0
         DO 130 I=1,2*IELEM
         IF(IPBBW(I,INW1).EQ.JND1) THEN
            KK=I
            GO TO 140
         ENDIF
  130    CONTINUE
         CALL XABORT('TRICHH: BUG3.')
  140    SG=REAL(SIGN(1,KNW1))
         BBW(KK,INW1)=BBW(KK,INW1)+SG*SSS*REAL(VOL0/DENOM)*V(K2,K1+1)
      ENDIF
      IF(KNX1.NE.0.0) THEN
         KK=0
         DO 150 I=1,2*IELEM
         IF(IPBBX(I,INX1).EQ.JND2) THEN
            KK=I
            GO TO 160
         ENDIF
  150    CONTINUE
         CALL XABORT('TRICHH: BUG4.')
  160    SG=REAL(SIGN(1,KNX1))
         BBX(KK,INX1)=BBX(KK,INX1)+SG*SSS*REAL(VOL0/DENOM)*V(K2,K1+1)
      ENDIF
      IF(KNY1.NE.0.0) THEN
         KK=0
         DO 170 I=1,2*IELEM
         IF(IPBBY(I,INY1).EQ.JND3) THEN
            KK=I
            GO TO 180
         ENDIF
  170    CONTINUE
         CALL XABORT('TRICHH: BUG5.')
  180    SG=REAL(SIGN(1,KNY1))
         BBY(KK,INY1)=BBY(KK,INY1)+SG*SSS*REAL(VOL0/DENOM)*V(K2,K1+1)
      ENDIF
  190 CONTINUE
  191 CONTINUE
  192 CONTINUE
  193 CONTINUE
  194 CONTINUE
      DO 253 K5=0,2 ! THREE LOZENGES PER HEXAGON
      DO 252 K2=0,IELEM-1
      DO 251 K1=0,IELEM-1
      KNZ1=KN(NUM,3+6*NELEH+2*K5*IELEM**2+K2*IELEM+K1+1)
      KNZ2=KN(NUM,3+6*NELEH+(2*K5+1)*IELEM**2+K2*IELEM+K1+1)
      INZ1=ABS(KNZ1)-LL4W-LL4X-LL4Y
      INZ2=ABS(KNZ2)-LL4W-LL4X-LL4Y
      DO 250 K3=0,IELEM-1
      IF(K5.EQ.0) THEN
         JND1=(NUM-1)*IELEM**3+K3*IELEM**2+K2*IELEM+K1+1
      ELSE
         JND1=(KN(NUM,K5)-1)*IELEM**3+K3*IELEM**2+K2*IELEM+K1+1
      ENDIF
      IF(KNZ1.NE.0) THEN
         KK=0
         DO 210 I=1,2*IELEM
         IF(IPBBZ(I,INZ1).EQ.JND1) THEN
            KK=I
            GO TO 220
         ENDIF
  210    CONTINUE
         CALL XABORT('TRICHH: BUG6.')
  220    SG=REAL(SIGN(1,KNZ1))
         BBZ(KK,INZ1)=BBZ(KK,INZ1)+SG*REAL(VOL0/DZ)*V(1,K3+1)
      ENDIF
      IF(KNZ2.NE.0) THEN
         KK=0
         DO 230 I=1,2*IELEM
         IF(IPBBZ(I,INZ2).EQ.JND1) THEN
            KK=I
            GO TO 240
         ENDIF
  230    CONTINUE
         CALL XABORT('TRICHH: BUG7.')
  240    SG=REAL(SIGN(1,KNZ2))
         BBZ(KK,INZ2)=BBZ(KK,INZ2)+SG*REAL(VOL0/DZ)*V(IELEM+1,K3+1)
      ENDIF
  250 CONTINUE
  251 CONTINUE
  252 CONTINUE
  253 CONTINUE
  260 CONTINUE
      RETURN
*
  600 FORMAT(/52H TRICHH: MAXIMUM BANDWIDTH FOR W-ORIENTED MATRICES =,
     1 I4/27X,25HFOR X-ORIENTED MATRICES =,I4/27X,16HFOR Y-ORIENTED M,
     2 9HATRICES =,I4/27X,25HFOR Z-ORIENTED MATRICES =,I4)
  610 FORMAT(/40H TRICHH: LENGTH OF W-ORIENTED MATRICES =,I10/16X,
     1 24HOF X-ORIENTED MATRICES =,I10/16X,24HOF Y-ORIENTED MATRICES =,
     2 I10/16X,24HOF Z-ORIENTED MATRICES =,I10)
      END