1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
|
*DECK TRICHH
SUBROUTINE TRICHH(IMPX,MAXKN,NBLOS,LXH,LZ,IELEM,ISPLH,L4,LL4F,
1 LL4W,LL4X,LL4Y,LL4Z,SIDE,ZZ,FRZ,IPERT,KN,V,H,MUW,MUX,MUY,MUZ,
2 IPBBW,IPBBX,IPBBY,IPBBZ,BBW,BBX,BBY,BBZ,CTRAN)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Thomas-Raviart-Schneider (dual) finite element unknown numbering for
* ADI solution in a 3D hexagonal domain. Compute the storage info for
* ADI matrices in compressed diagonal storage mode. Compute the ADI
* permutation vectors. Compute the group-independent WB, XB, YB and ZB
* matrices.
*
*Copyright:
* Copyright (C) 2006 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IMPX print parameter.
* MAXKN number of components in KN.
* NBLOS number of lozenges per direction in 3D with mesh-splitting.
* LXH number of hexagons in a plane.
* LZ number of elements along the Z axis.
* IELEM degree of the Lagrangian finite elements: =1 (linear);
* =2 (parabolic); =3 (cubic).
* ISPLH mesh-splitting in 3*ISPLH**2 lozenges per hexagon.
* L4 total number of unknown (variational coefficients) per
* energy group (order of system matrices).
* LL4F exact number of flux unknowns.
* LL4W exact number of W-directed current unknowns.
* LL4X exact number of X-directed current unknowns.
* LL4Y exact number of Y-directed current unknowns.
* LL4Z exact number of Z-directed current unknowns.
* SIDE side of an hexagon.
* ZZ Z-directed mesh spacings.
* FRZ volume fractions for the axial SYME boundary condition.
* IPERT mixture permutation index.
* KN ADI permutation indices for the volumes and currents.
* V nodal coupling matrix matrix.
* H Piolat (hexagonal) coupling matrix.
*
*Parameters: output
* MUW W-directed compressed diagonal mode indices.
* MUX X-directed compressed diagonal mode indices.
* MUY Y-directed compressed diagonal mode indices.
* MUZ Z-directed compressed diagonal mode indices.
* IPBBW W-directed perdue storage indices.
* IPBBX X-directed perdue storage indices.
* IPBBY Y-directed perdue storage indices.
* IPBBZ Z-directed perdue storage indices.
* BBW W-directed flux-current matrices.
* BBX X-directed flux-current matrices.
* BBY Y-directed flux-current matrices.
* BBZ Z-directed flux-current matrices.
* CTRAN tranverse coupling Piolat unit matrix.
*
*-----------------------------------------------------------------------
*
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER IMPX,MAXKN,NBLOS,LXH,LZ,IELEM,ISPLH,L4,IPERT(NBLOS),
1 KN(NBLOS,MAXKN/NBLOS),LL4F,LL4W,LL4X,LL4Y,LL4Z,MUW(L4),
2 MUX(L4),MUY(L4),MUZ(L4),IPBBW(2*IELEM,LL4W),IPBBX(2*IELEM,LL4X),
3 IPBBY(2*IELEM,LL4Y),IPBBZ(2*IELEM,LL4Z)
REAL SIDE,ZZ(3,NBLOS),FRZ(NBLOS),V(IELEM+1,IELEM),
1 H(IELEM+1,IELEM),BBW(2*IELEM,LL4W),BBX(2*IELEM,LL4X),
2 BBY(2*IELEM,LL4Y),BBZ(2*IELEM,LL4Z)
DOUBLE PRECISION CTRAN((IELEM+1)*IELEM,(IELEM+1)*IELEM)
*----
* LOCAL VARIABLES
*----
DOUBLE PRECISION TTTT,DENOM,VOL0
*
NELEH=(IELEM+1)*IELEM**2
NELEZ=6*IELEM**2
NBC=INT((SQRT(REAL((4*LXH-1)/3))+1.)/2.)
IF(LL4F.GT.3*NBLOS*IELEM**3) CALL XABORT('TRICHH: BUG1.')
IF(LL4W.GT.(2*NBLOS*IELEM+(2*NBC-1)*ISPLH*LZ)*IELEM**2)
1 CALL XABORT('TRICHH: BUG2.')
*----
* COMPUTE THE TRANVERSE COUPLING PIOLAT UNIT MATRIX
*----
CTRAN(:(IELEM+1)*IELEM,:(IELEM+1)*IELEM)=0.0D0
CNORM=SIDE*SIDE/SQRT(3.)
I=0
DO 22 JS=1,IELEM
DO 21 JT=1,IELEM+1
J=0
I=I+1
SSS=1.0
DO 20 IT=1,IELEM
DO 10 IS=1,IELEM+1
J=J+1
CTRAN(I,J)=SSS*CNORM*H(IS,JS)*H(JT,IT)
10 CONTINUE
SSS=-SSS
20 CONTINUE
21 CONTINUE
22 CONTINUE
IF(IMPX.GT.1) THEN
WRITE(6,*) 'TRICHH: MATRIX CTRAN'
DO 30 I=1,(IELEM+1)*IELEM
WRITE(6,'(10(1X,1P,E12.4))') (CTRAN(I,J),J=1,(IELEM+1)*IELEM)
30 CONTINUE
WRITE(6,*) ' '
ENDIF
*----
* COMPUTE THE W-, X- ,Y- AND Z-ORIENTED SYSTEM BANDWIDTH VECTORS
*----
MUW(:L4)=1
MUX(:L4)=1
MUY(:L4)=1
MUZ(:L4)=1
IPBBW(:2*IELEM,:LL4W)=0
IPBBX(:2*IELEM,:LL4X)=0
IPBBY(:2*IELEM,:LL4Y)=0
IPBBZ(:2*IELEM,:LL4Z)=0
NUM=0
DO 80 KEL=1,NBLOS
IF(IPERT(KEL).EQ.0) GO TO 80
NUM=NUM+1
DO 64 K5=0,1 ! TWO LOZENGES PER HEXAGON
DO 63 K4=0,IELEM-1
DO 62 K3=0,IELEM-1
DO 61 K2=1,IELEM+1
KNW1=KN(NUM,3+K5*NELEH+(K4*IELEM+K3)*(IELEM+1)+K2)
KNX1=KN(NUM,3+(K5+2)*NELEH+(K4*IELEM+K3)*(IELEM+1)+K2)
KNY1=KN(NUM,3+(K5+4)*NELEH+(K4*IELEM+K3)*(IELEM+1)+K2)
INW1=ABS(KNW1)
INX1=ABS(KNX1)-LL4W
INY1=ABS(KNY1)-LL4W-LL4X
DO 40 K1=1,IELEM+1
KNW2=KN(NUM,3+K5*NELEH+(K4*IELEM+K3)*(IELEM+1)+K1)
KNX2=KN(NUM,3+(K5+2)*NELEH+(K4*IELEM+K3)*(IELEM+1)+K1)
KNY2=KN(NUM,3+(K5+4)*NELEH+(K4*IELEM+K3)*(IELEM+1)+K1)
INW2=ABS(KNW2)
INX2=ABS(KNX2)-LL4W
INY2=ABS(KNY2)-LL4W-LL4X
IF((KNW2.NE.0).AND.(KNW1.NE.0)) THEN
MUW(INW1)=MAX(MUW(INW1),INW1-INW2+1)
MUW(INW2)=MAX(MUW(INW2),INW2-INW1+1)
ENDIF
IF((KNX2.NE.0).AND.(KNX1.NE.0)) THEN
MUX(INX1)=MAX(MUX(INX1),INX1-INX2+1)
MUX(INX2)=MAX(MUX(INX2),INX2-INX1+1)
ENDIF
IF((KNY2.NE.0).AND.(KNY1.NE.0)) THEN
MUY(INY1)=MAX(MUY(INY1),INY1-INY2+1)
MUY(INY2)=MAX(MUY(INY2),INY2-INY1+1)
ENDIF
40 CONTINUE
DO 60 K1=0,IELEM-1
IF(V(K2,K1+1).EQ.0.0) GO TO 60
IF(K5.EQ.0) THEN
JND1=(NUM-1)*IELEM**3+K4*IELEM**2+K3*IELEM+K1+1
JND2=(KN(NUM,1)-1)*IELEM**3+K4*IELEM**2+K3*IELEM+K1+1
JND3=(KN(NUM,2)-1)*IELEM**3+K4*IELEM**2+K3*IELEM+K1+1
ELSE
JND1=(KN(NUM,1)-1)*IELEM**3+K4*IELEM**2+K1*IELEM+K3+1
JND2=(KN(NUM,2)-1)*IELEM**3+K4*IELEM**2+K1*IELEM+K3+1
JND3=(KN(NUM,3)-1)*IELEM**3+K4*IELEM**2+K1*IELEM+K3+1
ENDIF
IF(KNW1.NE.0) CALL TRINDX(JND1,IPBBW(1,INW1),2*IELEM)
IF(KNX1.NE.0) CALL TRINDX(JND2,IPBBX(1,INX1),2*IELEM)
IF(KNY1.NE.0) CALL TRINDX(JND3,IPBBY(1,INY1),2*IELEM)
60 CONTINUE
61 CONTINUE
62 CONTINUE
63 CONTINUE
64 CONTINUE
DO 73 K5=0,2 ! THREE LOZENGES PER HEXAGON
DO 72 K2=0,IELEM-1
DO 71 K1=0,IELEM-1
KNZ1=KN(NUM,3+6*NELEH+2*K5*IELEM**2+K2*IELEM+K1+1)
KNZ2=KN(NUM,3+6*NELEH+(2*K5+1)*IELEM**2+K2*IELEM+K1+1)
INZ1=ABS(KNZ1)-LL4W-LL4X-LL4Y
INZ2=ABS(KNZ2)-LL4W-LL4X-LL4Y
IF((KNZ1.NE.0).AND.(KNZ2.NE.0)) THEN
MUZ(INZ2)=MAX(MUZ(INZ2),INZ2-INZ1+1)
MUZ(INZ1)=MAX(MUZ(INZ1),INZ1-INZ2+1)
ENDIF
DO 70 K3=0,IELEM-1
IF(K5.EQ.0) THEN
JND1=(NUM-1)*IELEM**3+K3*IELEM**2+K2*IELEM+K1+1
ELSE
JND1=(KN(NUM,K5)-1)*IELEM**3+K3*IELEM**2+K2*IELEM+K1+1
ENDIF
IF(KNZ1.NE.0) CALL TRINDX(JND1,IPBBZ(1,INZ1),2*IELEM)
IF(KNZ2.NE.0) CALL TRINDX(JND1,IPBBZ(1,INZ2),2*IELEM)
70 CONTINUE
71 CONTINUE
72 CONTINUE
73 CONTINUE
80 CONTINUE
*
MUWMAX=0
IIMAXW=0
DO 90 I=1,LL4W
MUWMAX=MAX(MUWMAX,MUW(I))
IIMAXW=IIMAXW+MUW(I)
MUW(I)=IIMAXW
90 CONTINUE
MUXMAX=0
IIMAXX=0
DO 100 I=1,LL4X
MUXMAX=MAX(MUXMAX,MUX(I))
IIMAXX=IIMAXX+MUX(I)
MUX(I)=IIMAXX
100 CONTINUE
MUYMAX=0
IIMAXY=0
DO 110 I=1,LL4Y
MUYMAX=MAX(MUYMAX,MUY(I))
IIMAXY=IIMAXY+MUY(I)
MUY(I)=IIMAXY
110 CONTINUE
MUZMAX=0
IIMAXZ=0
DO 120 I=1,LL4Z
MUZMAX=MAX(MUZMAX,MUZ(I))
IIMAXZ=IIMAXZ+MUZ(I)
MUZ(I)=IIMAXZ
120 CONTINUE
IF(IMPX.GT.0) THEN
WRITE (6,600) MUWMAX,MUXMAX,MUYMAX,MUZMAX
WRITE (6,610) IIMAXW,IIMAXX,IIMAXY,IIMAXZ
ENDIF
*----
* COMPUTE THE FLUX-CURRENT COUPLING MATRICES WB, XB, YB AND ZB.
*----
BBW(:2*IELEM,:LL4W)=0.0
BBX(:2*IELEM,:LL4X)=0.0
BBY(:2*IELEM,:LL4Y)=0.0
BBZ(:2*IELEM,:LL4Z)=0.0
TTTT=0.5D0*SQRT(3.D00)*SIDE*SIDE
DENOM=0.5D0*SQRT(3.D00)*SIDE
NUM=0
DO 260 KEL=1,NBLOS
IF(IPERT(KEL).EQ.0) GO TO 260
NUM=NUM+1
DZ=ZZ(1,IPERT(KEL))
VOL0=TTTT*DZ*FRZ(KEL)
DO 194 K5=0,1
DO 193 K4=0,IELEM-1
DO 192 K3=0,IELEM-1
DO 191 K2=1,IELEM+1
KNW1=KN(NUM,3+K5*NELEH+(K4*IELEM+K3)*(IELEM+1)+K2)
KNX1=KN(NUM,3+(K5+2)*NELEH+(K4*IELEM+K3)*(IELEM+1)+K2)
KNY1=KN(NUM,3+(K5+4)*NELEH+(K4*IELEM+K3)*(IELEM+1)+K2)
INW1=ABS(KNW1)
INX1=ABS(KNX1)-LL4W
INY1=ABS(KNY1)-LL4W-LL4X
DO 190 K1=0,IELEM-1
IF(V(K2,K1+1).EQ.0.0) GO TO 190
IF(K5.EQ.0) THEN
SSS=(-1.0)**K1
JND1=(NUM-1)*IELEM**3+K4*IELEM**2+K3*IELEM+K1+1
JND2=(KN(NUM,1)-1)*IELEM**3+K4*IELEM**2+K3*IELEM+K1+1
JND3=(KN(NUM,2)-1)*IELEM**3+K4*IELEM**2+K3*IELEM+K1+1
ELSE
SSS=1.0
JND1=(KN(NUM,1)-1)*IELEM**3+K4*IELEM**2+K1*IELEM+K3+1
JND2=(KN(NUM,2)-1)*IELEM**3+K4*IELEM**2+K1*IELEM+K3+1
JND3=(KN(NUM,3)-1)*IELEM**3+K4*IELEM**2+K1*IELEM+K3+1
ENDIF
IF(KNW1.NE.0.0) THEN
KK=0
DO 130 I=1,2*IELEM
IF(IPBBW(I,INW1).EQ.JND1) THEN
KK=I
GO TO 140
ENDIF
130 CONTINUE
CALL XABORT('TRICHH: BUG3.')
140 SG=REAL(SIGN(1,KNW1))
BBW(KK,INW1)=BBW(KK,INW1)+SG*SSS*REAL(VOL0/DENOM)*V(K2,K1+1)
ENDIF
IF(KNX1.NE.0.0) THEN
KK=0
DO 150 I=1,2*IELEM
IF(IPBBX(I,INX1).EQ.JND2) THEN
KK=I
GO TO 160
ENDIF
150 CONTINUE
CALL XABORT('TRICHH: BUG4.')
160 SG=REAL(SIGN(1,KNX1))
BBX(KK,INX1)=BBX(KK,INX1)+SG*SSS*REAL(VOL0/DENOM)*V(K2,K1+1)
ENDIF
IF(KNY1.NE.0.0) THEN
KK=0
DO 170 I=1,2*IELEM
IF(IPBBY(I,INY1).EQ.JND3) THEN
KK=I
GO TO 180
ENDIF
170 CONTINUE
CALL XABORT('TRICHH: BUG5.')
180 SG=REAL(SIGN(1,KNY1))
BBY(KK,INY1)=BBY(KK,INY1)+SG*SSS*REAL(VOL0/DENOM)*V(K2,K1+1)
ENDIF
190 CONTINUE
191 CONTINUE
192 CONTINUE
193 CONTINUE
194 CONTINUE
DO 253 K5=0,2 ! THREE LOZENGES PER HEXAGON
DO 252 K2=0,IELEM-1
DO 251 K1=0,IELEM-1
KNZ1=KN(NUM,3+6*NELEH+2*K5*IELEM**2+K2*IELEM+K1+1)
KNZ2=KN(NUM,3+6*NELEH+(2*K5+1)*IELEM**2+K2*IELEM+K1+1)
INZ1=ABS(KNZ1)-LL4W-LL4X-LL4Y
INZ2=ABS(KNZ2)-LL4W-LL4X-LL4Y
DO 250 K3=0,IELEM-1
IF(K5.EQ.0) THEN
JND1=(NUM-1)*IELEM**3+K3*IELEM**2+K2*IELEM+K1+1
ELSE
JND1=(KN(NUM,K5)-1)*IELEM**3+K3*IELEM**2+K2*IELEM+K1+1
ENDIF
IF(KNZ1.NE.0) THEN
KK=0
DO 210 I=1,2*IELEM
IF(IPBBZ(I,INZ1).EQ.JND1) THEN
KK=I
GO TO 220
ENDIF
210 CONTINUE
CALL XABORT('TRICHH: BUG6.')
220 SG=REAL(SIGN(1,KNZ1))
BBZ(KK,INZ1)=BBZ(KK,INZ1)+SG*REAL(VOL0/DZ)*V(1,K3+1)
ENDIF
IF(KNZ2.NE.0) THEN
KK=0
DO 230 I=1,2*IELEM
IF(IPBBZ(I,INZ2).EQ.JND1) THEN
KK=I
GO TO 240
ENDIF
230 CONTINUE
CALL XABORT('TRICHH: BUG7.')
240 SG=REAL(SIGN(1,KNZ2))
BBZ(KK,INZ2)=BBZ(KK,INZ2)+SG*REAL(VOL0/DZ)*V(IELEM+1,K3+1)
ENDIF
250 CONTINUE
251 CONTINUE
252 CONTINUE
253 CONTINUE
260 CONTINUE
RETURN
*
600 FORMAT(/52H TRICHH: MAXIMUM BANDWIDTH FOR W-ORIENTED MATRICES =,
1 I4/27X,25HFOR X-ORIENTED MATRICES =,I4/27X,16HFOR Y-ORIENTED M,
2 9HATRICES =,I4/27X,25HFOR Z-ORIENTED MATRICES =,I4)
610 FORMAT(/40H TRICHH: LENGTH OF W-ORIENTED MATRICES =,I10/16X,
1 24HOF X-ORIENTED MATRICES =,I10/16X,24HOF Y-ORIENTED MATRICES =,
2 I10/16X,24HOF Z-ORIENTED MATRICES =,I10)
END
|