1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
|
*DECK PNSH2D
SUBROUTINE PNSH2D(ITY,IELEM,ICOL,NBLOS,SIDE,MAT,NBMIX,NLF,NVD,
1 NAN,SIGT,L4,IPERT,KN,QFR,LC,R,V,H,FUNKNO,SUNKNO)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Source calculation for a SPN approximation in BIVAC, including
* neighbour Legendre and out-of-group contributions.
* Raviart-Thomas-Schneider method in hexagonal geometry.
*
*Copyright:
* Copyright (C) 2009 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* ITY type of assembly:
* =0: leakage-removal matrix assembly; =1: cross section matrix
* assembly.
* IELEM degree of the Lagrangian finite elements: =1 (linear);
* =2 (parabolic); =3 (cubic); =4 (quartic).
* ICOL type of quadrature: =1 (analytical integration);
* =2 (Gauss-Lobatto); =3 (Gauss-Legendre).
* NBLOS number of lozenges per direction, taking into account
* mesh-splitting.
* SIDE side of the hexagons.
* MAT index-number of the mixture type assigned to each volume.
* NBMIX number of mixtures.
* NLF number of Legendre orders for the flux (even number).
* NVD type of void boundary condition if NLF>0 and ICOL=3.
* NAN number of Legendre orders for the cross sections.
* SIGT macroscopic cross sections ordered by mixture.
* SIGT(:,NAN) generally contains the total cross section only.
* L4 order of the profiled system matrices.
* IPERT mixture permutation index.
* KN element-ordered unknown list.
* QFR element-ordered boundary conditions.
* LC order of the unit matrices.
* R unit Cartesian mass matrix.
* V unit nodal coupling matrix.
* H Piolat (hexagonal) coupling matrix.
* FUNKNO initial fluxes.
* SUNKNO initial sources.
*
*Parameters: output
* SUNKNO modified sources.
*
*-----------------------------------------------------------------------
*
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER ITY,IELEM,ICOL,NBLOS,MAT(3,NBLOS),NBMIX,NLF,NVD,NAN,L4,
1 IPERT(NBLOS),KN(NBLOS,4+6*IELEM*(IELEM+1)),LC
REAL SIDE,SIGT(NBMIX,NAN),QFR(NBLOS,6),R(LC,LC),V(LC,LC-1),
1 H(LC,LC-1),SUNKNO(L4*NLF/2),FUNKNO(L4*NLF/2)
*----
* LOCAL VARIABLES
*----
PARAMETER(MAXIEL=3)
DOUBLE PRECISION CTRAN(MAXIEL*(MAXIEL+1),MAXIEL*(MAXIEL+1)),VAR1
*
TTTT=REAL(0.5D0*SQRT(3.D00)*SIDE*SIDE)
IF(ICOL.EQ.3) THEN
IF(NVD.EQ.0) THEN
NZMAR=NLF+1
ELSE IF(NVD.EQ.1) THEN
NZMAR=NLF
ELSE IF(NVD.EQ.2) THEN
NZMAR=65
ENDIF
ELSE
NZMAR=65
ENDIF
NELEM=IELEM*(IELEM+1)
COEF=REAL(2.0D0*SIDE*SIDE/SQRT(3.D00))
*----
* COMPUTE THE TRANVERSE COUPLING PIOLAT UNIT MATRIX
*----
CTRAN(:MAXIEL*(MAXIEL+1),:MAXIEL*(MAXIEL+1))=0.0D0
CNORM=REAL(SIDE*SIDE/SQRT(3.D00))
I=0
DO 22 JS=1,IELEM
DO 21 JT=1,IELEM+1
J=0
I=I+1
SSS=1.0
DO 20 IT=1,IELEM
DO 10 IS=1,IELEM+1
J=J+1
CTRAN(I,J)=SSS*CNORM*H(IS,JS)*H(JT,IT)
10 CONTINUE
SSS=-SSS
20 CONTINUE
21 CONTINUE
22 CONTINUE
*
DO 160 IL=0,NLF-1
IF((ITY.EQ.1).AND.(IL.GE.NAN)) GO TO 160
FACT=REAL(2*IL+1)
*----
* COMPUTE THE SOURCE AT ORDER IL.
*----
NUM=0
DO 150 KEL=1,NBLOS
IF(IPERT(KEL).EQ.0) GO TO 150
NUM=NUM+1
IBM=MAT(1,IPERT(KEL))
IF(IBM.EQ.0) GO TO 150
GARS=SIGT(IBM,MIN(IL+1,NAN))
IF(MOD(IL,2).EQ.0) THEN
* EVEN PARITY EQUATION.
DO 35 K2=0,IELEM-1
DO 30 K1=0,IELEM-1
JND1=(IL/2)*L4+KN(NUM,1)+K2*IELEM+K1 ! w-oriented flux
JND2=(IL/2)*L4+KN(NUM,2)+K2*IELEM+K1
JND3=(IL/2)*L4+KN(NUM,3)+K2*IELEM+K1
SUNKNO(JND1)=SUNKNO(JND1)+FACT*TTTT*GARS*FUNKNO(JND1)
SUNKNO(JND2)=SUNKNO(JND2)+FACT*TTTT*GARS*FUNKNO(JND2)
SUNKNO(JND3)=SUNKNO(JND3)+FACT*TTTT*GARS*FUNKNO(JND3)
30 CONTINUE
35 CONTINUE
IF(ITY.EQ.1) GO TO 150
*
DO 43 K4=0,1
DO 42 K3=0,IELEM-1
DO 41 K2=1,IELEM+1
KNW1=KN(NUM,4+K4*NELEM+K3*(IELEM+1)+K2)
KNX1=KN(NUM,4+(K4+2)*NELEM+K3*(IELEM+1)+K2)
KNY1=KN(NUM,4+(K4+4)*NELEM+K3*(IELEM+1)+K2)
INW1=(IL/2)*L4+ABS(KNW1) ! w-oriented current
INX1=(IL/2)*L4+ABS(KNX1)
INY1=(IL/2)*L4+ABS(KNY1)
DO 40 K1=0,IELEM-1
IF(V(K2,K1+1).EQ.0.0) GO TO 40
IF(K4.EQ.0) THEN
SSS=(-1.0)**K1
JND1=(IL/2)*L4+KN(NUM,1)+K3*IELEM+K1 ! w-oriented flux
JND2=(IL/2)*L4+KN(NUM,2)+K3*IELEM+K1
JND3=(IL/2)*L4+KN(NUM,3)+K3*IELEM+K1
ELSE
SSS=1.0
JND1=(IL/2)*L4+KN(NUM,2)+K1*IELEM+K3
JND2=(IL/2)*L4+KN(NUM,3)+K1*IELEM+K3
JND3=(IL/2)*L4+KN(NUM,4)+K1*IELEM+K3
ENDIF
VAR1=SSS*REAL(IL+1)*SIDE*V(K2,K1+1)
IF(KNW1.NE.0) THEN
SG=REAL(SIGN(1,KNW1))
SUNKNO(JND1)=SUNKNO(JND1)+SG*REAL(VAR1)*FUNKNO(INW1)
ENDIF
IF(KNX1.NE.0) THEN
SG=REAL(SIGN(1,KNX1))
SUNKNO(JND2)=SUNKNO(JND2)+SG*REAL(VAR1)*FUNKNO(INX1)
ENDIF
IF(KNY1.NE.0) THEN
SG=REAL(SIGN(1,KNY1))
SUNKNO(JND3)=SUNKNO(JND3)+SG*REAL(VAR1)*FUNKNO(INY1)
ENDIF
IF(IL.GE.2) THEN
VAR1=SSS*REAL(IL)*SIDE*V(K2,K1+1)
IF(KNW1.NE.0) THEN
SG=REAL(SIGN(1,KNW1))
SUNKNO(JND1)=SUNKNO(JND1)+SG*REAL(VAR1)*FUNKNO(INW1-L4)
ENDIF
IF(KNX1.NE.0) THEN
SG=REAL(SIGN(1,KNX1))
SUNKNO(JND2)=SUNKNO(JND2)+SG*REAL(VAR1)*FUNKNO(INX1-L4)
ENDIF
IF(KNY1.NE.0) THEN
SG=REAL(SIGN(1,KNY1))
SUNKNO(JND3)=SUNKNO(JND3)+SG*REAL(VAR1)*FUNKNO(INY1-L4)
ENDIF
ENDIF
40 CONTINUE
41 CONTINUE
42 CONTINUE
43 CONTINUE
ELSE IF(MOD(IL,2).EQ.1) THEN
* ODD PARITY EQUATION.
DO 112 K4=0,1 ! TWO LOZENGES PER HEXAGON
DO 111 K3=0,IELEM-1
DO 110 K2=1,IELEM+1
KNW1=KN(NUM,4+K4*NELEM+K3*(IELEM+1)+K2) ! w-oriented current
KNX1=KN(NUM,4+(K4+2)*NELEM+K3*(IELEM+1)+K2)
KNY1=KN(NUM,4+(K4+4)*NELEM+K3*(IELEM+1)+K2)
INW1=(IL/2)*L4+ABS(KNW1)
INX1=(IL/2)*L4+ABS(KNX1)
INY1=(IL/2)*L4+ABS(KNY1)
DO 70 K1=1,IELEM+1
KNW2=KN(NUM,4+K4*NELEM+K3*(IELEM+1)+K1) ! w-oriented current
KNX2=KN(NUM,4+(K4+2)*NELEM+K3*(IELEM+1)+K1)
KNY2=KN(NUM,4+(K4+4)*NELEM+K3*(IELEM+1)+K1)
INW2=(IL/2)*L4+ABS(KNW2)
INX2=(IL/2)*L4+ABS(KNX2)
INY2=(IL/2)*L4+ABS(KNY2)
VAR1=FACT*COEF*GARS*R(K2,K1)
IF((KNW2.NE.0).AND.(KNW1.NE.0)) THEN
SG=REAL(SIGN(1,KNW1)*SIGN(1,KNW2))
SUNKNO(INW1)=SUNKNO(INW1)-SG*REAL(VAR1)*FUNKNO(INW2)
ENDIF
IF((KNX2.NE.0).AND.(KNX1.NE.0)) THEN
SG=REAL(SIGN(1,KNX1)*SIGN(1,KNX2))
SUNKNO(INX1)=SUNKNO(INX1)-SG*REAL(VAR1)*FUNKNO(INX2)
ENDIF
IF((KNY2.NE.0).AND.(KNY1.NE.0)) THEN
SG=REAL(SIGN(1,KNY1)*SIGN(1,KNY2))
SUNKNO(INY1)=SUNKNO(INY1)-SG*REAL(VAR1)*FUNKNO(INY2)
ENDIF
70 CONTINUE
IF(ITY.EQ.0) THEN
* BOUNDARY CONDITIONS.
IF(KNW1.NE.0) THEN
DO 80 IL2=1,NLF-1,2
ZMARS=PNMAR2(NZMAR,IL2,IL)
INW2=(IL2/2)*L4+ABS(KNW1)
IF((K2.EQ.1).AND.(K4.EQ.0)) THEN
VAR1=0.5*FACT*QFR(NUM,1)*ZMARS*FUNKNO(INW2)
SUNKNO(INW1)=SUNKNO(INW1)-REAL(VAR1)
ELSE IF((K2.EQ.IELEM+1).AND.(K4.EQ.1)) THEN
VAR1=0.5*FACT*QFR(NUM,2)*ZMARS*FUNKNO(INW2)
SUNKNO(INW1)=SUNKNO(INW1)-REAL(VAR1)
ENDIF
80 CONTINUE
ENDIF
IF(KNX1.NE.0) THEN
DO 90 IL2=1,NLF-1,2
ZMARS=PNMAR2(NZMAR,IL2,IL)
INX2=(IL2/2)*L4+ABS(KNX1)
IF((K2.EQ.1).AND.(K4.EQ.0)) THEN
VAR1=0.5*FACT*QFR(NUM,3)*ZMARS*FUNKNO(INX2)
SUNKNO(INX1)=SUNKNO(INX1)-REAL(VAR1)
ELSE IF((K2.EQ.IELEM+1).AND.(K4.EQ.1)) THEN
VAR1=0.5*FACT*QFR(NUM,4)*ZMARS*FUNKNO(INX2)
SUNKNO(INX1)=SUNKNO(INX1)-REAL(VAR1)
ENDIF
90 CONTINUE
ENDIF
IF(KNY1.NE.0) THEN
DO 100 IL2=1,NLF-1,2
ZMARS=PNMAR2(NZMAR,IL2,IL)
INY2=(IL2/2)*L4+ABS(KNY1)
IF((K2.EQ.1).AND.(K4.EQ.0)) THEN
VAR1=0.5*FACT*QFR(NUM,5)*ZMARS*FUNKNO(INY2)
SUNKNO(INY1)=SUNKNO(INY1)-REAL(VAR1)
ELSE IF((K2.EQ.IELEM+1).AND.(K4.EQ.1)) THEN
VAR1=0.5*FACT*QFR(NUM,6)*ZMARS*FUNKNO(INY2)
SUNKNO(INY1)=SUNKNO(INY1)-REAL(VAR1)
ENDIF
100 CONTINUE
ENDIF
ENDIF
110 CONTINUE
111 CONTINUE
112 CONTINUE
*
ITRS=0
DO I=1,NBLOS
IF(KN(I,1).EQ.KN(NUM,4)) THEN
ITRS=I
GO TO 120
ENDIF
ENDDO
CALL XABORT('PNDH2E: ITRS FAILURE.')
120 DO 135 I=1,NELEM
KNW1=KN(ITRS,4+I)
KNX1=KN(NUM,4+2*NELEM+I)
KNY1=KN(NUM,4+4*NELEM+I)
INW1=(IL/2)*L4+ABS(KNW1)
INX1=(IL/2)*L4+ABS(KNX1)
INY1=(IL/2)*L4+ABS(KNY1)
DO 130 J=1,NELEM
KNW2=KN(NUM,4+NELEM+J)
KNX2=KN(NUM,4+3*NELEM+J)
KNY2=KN(NUM,4+5*NELEM+J)
INW2=(IL/2)*L4+ABS(KNW2)
INX2=(IL/2)*L4+ABS(KNX2)
INY2=(IL/2)*L4+ABS(KNY2)
VAR1=FACT*GARS*CTRAN(I,J)
IF((KNY2.NE.0).AND.(KNW1.NE.0)) THEN
SG=REAL(SIGN(1,KNW1)*SIGN(1,KNY2))
SUNKNO(INY2)=SUNKNO(INY2)-SG*REAL(VAR1)*FUNKNO(INW1) ! y w
SUNKNO(INW1)=SUNKNO(INW1)-SG*REAL(VAR1)*FUNKNO(INY2) ! w y
ENDIF
IF((KNW2.NE.0).AND.(KNX1.NE.0)) THEN
SG=REAL(SIGN(1,KNX1)*SIGN(1,KNW2))
SUNKNO(INX1)=SUNKNO(INX1)-SG*REAL(VAR1)*FUNKNO(INW2) ! x w
SUNKNO(INW2)=SUNKNO(INW2)-SG*REAL(VAR1)*FUNKNO(INX1) ! w x
ENDIF
IF((KNX2.NE.0).AND.(KNY1.NE.0)) THEN
SG=REAL(SIGN(1,KNY1)*SIGN(1,KNX2))
SUNKNO(INY1)=SUNKNO(INY1)-SG*REAL(VAR1)*FUNKNO(INX2) ! y x
SUNKNO(INX2)=SUNKNO(INX2)-SG*REAL(VAR1)*FUNKNO(INY1) ! x y
ENDIF
130 CONTINUE
135 CONTINUE
IF(ITY.EQ.1) GO TO 150
*
DO 143 K4=0,1
DO 142 K3=0,IELEM-1
DO 141 K2=1,IELEM+1
KNW1=KN(NUM,4+K4*NELEM+K3*(IELEM+1)+K2)
KNX1=KN(NUM,4+(K4+2)*NELEM+K3*(IELEM+1)+K2)
KNY1=KN(NUM,4+(K4+4)*NELEM+K3*(IELEM+1)+K2)
INW1=(IL/2)*L4+ABS(KNW1) ! w-oriented current
INX1=(IL/2)*L4+ABS(KNX1)
INY1=(IL/2)*L4+ABS(KNY1)
DO 140 K1=0,IELEM-1
IF(V(K2,K1+1).EQ.0.0) GO TO 140
IF(K4.EQ.0) THEN
SSS=(-1.0)**K1
JND1=(IL/2)*L4+KN(NUM,1)+K3*IELEM+K1 ! w-oriented flux
JND2=(IL/2)*L4+KN(NUM,2)+K3*IELEM+K1
JND3=(IL/2)*L4+KN(NUM,3)+K3*IELEM+K1
ELSE
SSS=1.0
JND1=(IL/2)*L4+KN(NUM,2)+K1*IELEM+K3
JND2=(IL/2)*L4+KN(NUM,3)+K1*IELEM+K3
JND3=(IL/2)*L4+KN(NUM,4)+K1*IELEM+K3
ENDIF
VAR1=SSS*REAL(IL)*SIDE*V(K2,K1+1)
IF(KNW1.NE.0) THEN
SG=REAL(SIGN(1,KNW1))
SUNKNO(INW1)=SUNKNO(INW1)+SG*REAL(VAR1)*FUNKNO(JND1)
ENDIF
IF(KNX1.NE.0) THEN
SG=REAL(SIGN(1,KNX1))
SUNKNO(INX1)=SUNKNO(INX1)+SG*REAL(VAR1)*FUNKNO(JND2)
ENDIF
IF(KNY1.NE.0) THEN
SG=REAL(SIGN(1,KNY1))
SUNKNO(INY1)=SUNKNO(INY1)+SG*REAL(VAR1)*FUNKNO(JND3)
ENDIF
IF(IL.LE.NLF-3) THEN
VAR1=SSS*REAL(IL+1)*SIDE*V(K2,K1+1)
IF(KNW1.NE.0) THEN
SG=REAL(SIGN(1,KNW1))
SUNKNO(INW1)=SUNKNO(INW1)+SG*REAL(VAR1)*FUNKNO(JND1+L4)
ENDIF
IF(KNX1.NE.0) THEN
SG=REAL(SIGN(1,KNX1))
SUNKNO(INX1)=SUNKNO(INX1)+SG*REAL(VAR1)*FUNKNO(JND2+L4)
ENDIF
IF(KNY1.NE.0) THEN
SG=REAL(SIGN(1,KNY1))
SUNKNO(INY1)=SUNKNO(INY1)+SG*REAL(VAR1)*FUNKNO(JND3+L4)
ENDIF
ENDIF
140 CONTINUE
141 CONTINUE
142 CONTINUE
143 CONTINUE
ENDIF
150 CONTINUE
160 CONTINUE
RETURN
END
|