1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
|
*DECK PNFL3E
SUBROUTINE PNFL3E (IL,NREG,IELEM,ICOL,XX,YY,ZZ,MAT,VOL,NBMIX,NLF,
1 NVD,NAN,SIGTI,L4,KN,QFR,LC,R,V,SUNKNO,FUNKNO)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Perform a one-group SPN flux iteration in Cartesian 3D geometry.
*
*Copyright:
* Copyright (C) 2004 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IL current Legendre order.
* NREG total number of regions.
* IELEM degree of the Lagrangian finite elements: =1 (linear);
* =2 (parabolic); =3 (cubic); =4 (quartic).
* ICOL type of quadrature: =1 (analytical integration);
* =2 (Gauss-Lobatto); =3 (Gauss-Legendre).
* XX X-directed mesh spacings.
* YY Y-directed mesh spacings.
* ZZ Z-directed mesh spacings.
* MAT index-number of the mixture type assigned to each volume.
* VOL volumes.
* NBMIX number of mixtures.
* NLF number of Legendre orders for the flux (even number).
* NVD type of void boundary condition if NLF>0 and ICOL=3.
* NAN number of Legendre orders for the cross sections.
* SIGTI inverse macroscopic cross sections ordered by mixture.
* SIGTI(:,NAN) generally contains the inverse total cross
* section only.
* L4 number of unknowns per energy group and per set of two
* Legendre orders.
* KN element-ordered unknown list.
* QFR element-ordered boundary conditions.
* LC order of the unit matrices.
* R unit Cartesian mass matrix.
* V unit nodal coupling matrix.
* SUNKNO sources.
* FUNKNO initial fluxes.
*
*Parameters: output
* FUNKNO right-hand-side of the linear system.
*
*-----------------------------------------------------------------------
*
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER IL,NREG,IELEM,ICOL,MAT(NREG),NBMIX,NLF,NVD,NAN,L4,
1 KN(NREG*(1+6*IELEM**2)),LC
REAL XX(NREG),YY(NREG),ZZ(NREG),VOL(NREG),SIGTI(NBMIX,NAN),
1 QFR(6*NREG),R(LC,LC),V(LC,LC-1),SUNKNO(L4*NLF/2),FUNKNO(L4*NLF/2)
*----
* LOCAL VARIABLES
*----
REAL QQ(5,5)
*
IF(ICOL.EQ.3) THEN
IF(NVD.EQ.0) THEN
NZMAR=NLF+1
ELSE IF(NVD.EQ.1) THEN
NZMAR=NLF
ELSE IF(NVD.EQ.2) THEN
NZMAR=65
ENDIF
ELSE
NZMAR=65
ENDIF
DO 12 I0=1,IELEM
DO 11 J0=1,IELEM
QQ(I0,J0)=0.0
DO 10 K0=2,IELEM
QQ(I0,J0)=QQ(I0,J0)+V(K0,I0)*V(K0,J0)/R(K0,K0)
10 CONTINUE
11 CONTINUE
12 CONTINUE
FACT=REAL(2*IL+1)
IF(MOD(IL,2).EQ.0) THEN
DO 20 I=1,L4
FUNKNO((IL/2)*L4+I)=SUNKNO((IL/2)*L4+I)
20 CONTINUE
ENDIF
*----
* COMPUTE THE SOLUTION AT ORDER IL.
*----
NUM1=0
NUM2=0
DO 150 K=1,NREG
IBM=MAT(K)
IF(IBM.EQ.0) GO TO 150
VOL0=VOL(K)
IF(MOD(IL,2).EQ.0) THEN
* EVEN PARITY EQUATION
IF(IL.GE.2) THEN
DO 32 K3=0,IELEM-1
DO 31 K2=0,IELEM-1
KN1=KN(NUM1+2+K3*IELEM+K2)
KN2=KN(NUM1+2+IELEM**2+K3*IELEM+K2)
KN3=KN(NUM1+2+2*IELEM**2+K3*IELEM+K2)
KN4=KN(NUM1+2+3*IELEM**2+K3*IELEM+K2)
KN5=KN(NUM1+2+4*IELEM**2+K3*IELEM+K2)
KN6=KN(NUM1+2+5*IELEM**2+K3*IELEM+K2)
IND1=((IL-2)/2)*L4+ABS(KN1)
IND2=((IL-2)/2)*L4+ABS(KN2)
IND3=((IL-2)/2)*L4+ABS(KN3)
IND4=((IL-2)/2)*L4+ABS(KN4)
IND5=((IL-2)/2)*L4+ABS(KN5)
IND6=((IL-2)/2)*L4+ABS(KN6)
DO 30 K1=0,IELEM-1
JND1=(IL/2)*L4+KN(NUM1+1)+(K3*IELEM+K2)*IELEM+K1
IF(KN1.NE.0) THEN
SG=REAL(SIGN(1,KN1))
FUNKNO(JND1)=FUNKNO(JND1)-SG*REAL(IL)*VOL0*V(1,K1+1)*
1 FUNKNO(IND1)/XX(K)
ENDIF
IF(KN2.NE.0) THEN
SG=REAL(SIGN(1,KN2))
FUNKNO(JND1)=FUNKNO(JND1)-SG*REAL(IL)*VOL0*
1 V(IELEM+1,K1+1)*FUNKNO(IND2)/XX(K)
ENDIF
JND1=(IL/2)*L4+KN(NUM1+1)+(K3*IELEM+K1)*IELEM+K2
IF(KN3.NE.0) THEN
SG=REAL(SIGN(1,KN3))
FUNKNO(JND1)=FUNKNO(JND1)-SG*REAL(IL)*VOL0*V(1,K1+1)*
1 FUNKNO(IND3)/YY(K)
ENDIF
IF(KN4.NE.0) THEN
SG=REAL(SIGN(1,KN4))
FUNKNO(JND1)=FUNKNO(JND1)-SG*REAL(IL)*VOL0*
1 V(IELEM+1,K1+1)*FUNKNO(IND4)/YY(K)
ENDIF
JND1=(IL/2)*L4+KN(NUM1+1)+(K1*IELEM+K3)*IELEM+K2
IF(KN5.NE.0) THEN
SG=REAL(SIGN(1,KN5))
FUNKNO(JND1)=FUNKNO(JND1)-SG*REAL(IL)*VOL0*V(1,K1+1)*
1 FUNKNO(IND5)/ZZ(K)
ENDIF
IF(KN6.NE.0) THEN
SG=REAL(SIGN(1,KN6))
FUNKNO(JND1)=FUNKNO(JND1)-SG*REAL(IL)*VOL0*
1 V(IELEM+1,K1+1)*FUNKNO(IND6)/ZZ(K)
ENDIF
30 CONTINUE
31 CONTINUE
32 CONTINUE
ENDIF
ELSE
DO 145 K3=0,IELEM-1
DO 140 K2=0,IELEM-1
* PARTIAL INVERSION OF THE ODD PARITY EQUATION. MODIFICATION
* OF THE EVEN PARITY EQUATION.
IF((IL.GE.3).AND.(IELEM.GT.1)) THEN
GARSI=SIGTI(IBM,MIN(IL-1,NAN))
DO 40 K1=0,IELEM-1
IF(QQ(K1+1,K1+1).EQ.0.0) GO TO 40
JND1=(IL/2)*L4+KN(NUM1+1)+(K3*IELEM+K2)*IELEM+K1
KND1=((IL-2)/2)*L4+KN(NUM1+1)+(K3*IELEM+K2)*IELEM+K1
FUNKNO(JND1)=FUNKNO(JND1)-(REAL(IL-1)*REAL(IL-2))*VOL0*
1 QQ(K1+1,K1+1)*GARSI*FUNKNO(KND1)/(REAL(2*IL-3)*XX(K)*XX(K))
*
JND1=(IL/2)*L4+KN(NUM1+1)+(K3*IELEM+K1)*IELEM+K2
KND1=((IL-2)/2)*L4+KN(NUM1+1)+(K3*IELEM+K1)*IELEM+K2
FUNKNO(JND1)=FUNKNO(JND1)-(REAL(IL-1)*REAL(IL-2))*VOL0*
1 QQ(K1+1,K1+1)*GARSI*FUNKNO(KND1)/(REAL(2*IL-3)*YY(K)*YY(K))
*
JND1=(IL/2)*L4+KN(NUM1+1)+(K1*IELEM+K3)*IELEM+K2
KND1=((IL-2)/2)*L4+KN(NUM1+1)+(K1*IELEM+K3)*IELEM+K2
FUNKNO(JND1)=FUNKNO(JND1)-(REAL(IL-1)*REAL(IL-2))*VOL0*
1 QQ(K1+1,K1+1)*GARSI*FUNKNO(KND1)/(REAL(2*IL-3)*ZZ(K)*ZZ(K))
40 CONTINUE
ENDIF
IF((IL.LE.NLF-3).AND.(IELEM.GT.1)) THEN
GARSI=SIGTI(IBM,MIN(IL+1,NAN))
DO 50 K1=0,IELEM-1
IF(QQ(K1+1,K1+1).EQ.0.0) GO TO 50
JND1=(IL/2)*L4+KN(NUM1+1)+(K3*IELEM+K2)*IELEM+K1
KND1=((IL+2)/2)*L4+KN(NUM1+1)+(K3*IELEM+K2)*IELEM+K1
FUNKNO(JND1)=FUNKNO(JND1)-(REAL(IL)*REAL(IL+1))*VOL0*
1 QQ(K1+1,K1+1)*GARSI*FUNKNO(KND1)/(FACT*XX(K)*XX(K))
*
JND1=(IL/2)*L4+KN(NUM1+1)+(K3*IELEM+K1)*IELEM+K2
KND1=((IL+2)/2)*L4+KN(NUM1+1)+(K3*IELEM+K1)*IELEM+K2
FUNKNO(JND1)=FUNKNO(JND1)-(REAL(IL)*REAL(IL+1))*VOL0*
1 QQ(K1+1,K1+1)*GARSI*FUNKNO(KND1)/(FACT*YY(K)*YY(K))
*
JND1=(IL/2)*L4+KN(NUM1+1)+(K1*IELEM+K3)*IELEM+K2
KND1=((IL+2)/2)*L4+KN(NUM1+1)+(K1*IELEM+K3)*IELEM+K2
FUNKNO(JND1)=FUNKNO(JND1)-(REAL(IL)*REAL(IL+1))*VOL0*
1 QQ(K1+1,K1+1)*GARSI*FUNKNO(KND1)/(FACT*ZZ(K)*ZZ(K))
50 CONTINUE
ENDIF
*
* ODD PARITY EQUATION
KN1=KN(NUM1+2+K3*IELEM+K2)
KN2=KN(NUM1+2+IELEM**2+K3*IELEM+K2)
KN3=KN(NUM1+2+2*IELEM**2+K3*IELEM+K2)
KN4=KN(NUM1+2+3*IELEM**2+K3*IELEM+K2)
KN5=KN(NUM1+2+4*IELEM**2+K3*IELEM+K2)
KN6=KN(NUM1+2+5*IELEM**2+K3*IELEM+K2)
IND1=(IL/2)*L4+ABS(KN1)
IND2=(IL/2)*L4+ABS(KN2)
IND3=(IL/2)*L4+ABS(KN3)
IND4=(IL/2)*L4+ABS(KN4)
IND5=(IL/2)*L4+ABS(KN5)
IND6=(IL/2)*L4+ABS(KN6)
IF((QFR(NUM2+1).NE.0.0).AND.(KN1.NE.0)) THEN
* XINF SIDE.
DO 60 IL2=1,NLF-1,2
IF(IL2.EQ.IL) GO TO 60
ZMARS=PNMAR2(NZMAR,IL2,IL)
INDL=(IL2/2)*L4+ABS(KN1)
FUNKNO(IND1)=FUNKNO(IND1)+0.5*FACT*QFR(NUM2+1)*ZMARS*
1 FUNKNO(INDL)
60 CONTINUE
ENDIF
IF((QFR(NUM2+2).NE.0.0).AND.(KN2.NE.0)) THEN
* XSUP SIDE.
DO 70 IL2=1,NLF-1,2
IF(IL2.EQ.IL) GO TO 70
ZMARS=PNMAR2(NZMAR,IL2,IL)
INDL=(IL2/2)*L4+ABS(KN2)
FUNKNO(IND2)=FUNKNO(IND2)+0.5*FACT*QFR(NUM2+2)*ZMARS*
1 FUNKNO(INDL)
70 CONTINUE
ENDIF
IF((QFR(NUM2+3).NE.0.0).AND.(KN3.NE.0)) THEN
* YINF SIDE.
DO 80 IL2=1,NLF-1,2
IF(IL2.EQ.IL) GO TO 80
ZMARS=PNMAR2(NZMAR,IL2,IL)
INDL=(IL2/2)*L4+ABS(KN3)
FUNKNO(IND3)=FUNKNO(IND3)+0.5*FACT*QFR(NUM2+3)*ZMARS*
1 FUNKNO(INDL)
80 CONTINUE
ENDIF
IF((QFR(NUM2+4).NE.0.0).AND.(KN4.NE.0)) THEN
* YSUP SIDE.
DO 90 IL2=1,NLF-1,2
IF(IL2.EQ.IL) GO TO 90
ZMARS=PNMAR2(NZMAR,IL2,IL)
INDL=(IL2/2)*L4+ABS(KN4)
FUNKNO(IND4)=FUNKNO(IND4)+0.5*FACT*QFR(NUM2+4)*ZMARS*
1 FUNKNO(INDL)
90 CONTINUE
ENDIF
IF((QFR(NUM2+5).NE.0.0).AND.(KN5.NE.0)) THEN
* ZINF SIDE.
DO 100 IL2=1,NLF-1,2
IF(IL2.EQ.IL) GO TO 100
ZMARS=PNMAR2(NZMAR,IL2,IL)
INDL=(IL2/2)*L4+ABS(KN5)
FUNKNO(IND5)=FUNKNO(IND5)+0.5*FACT*QFR(NUM2+5)*ZMARS*
1 FUNKNO(INDL)
100 CONTINUE
ENDIF
IF((QFR(NUM2+6).NE.0.0).AND.(KN6.NE.0)) THEN
* ZSUP SIDE.
DO 110 IL2=1,NLF-1,2
IF(IL2.EQ.IL) GO TO 110
ZMARS=PNMAR2(NZMAR,IL2,IL)
INDL=(IL2/2)*L4+ABS(KN6)
FUNKNO(IND6)=FUNKNO(IND6)+0.5*FACT*QFR(NUM2+6)*ZMARS*
1 FUNKNO(INDL)
110 CONTINUE
ENDIF
IF(IL.LE.NLF-3) THEN
DO 130 K1=0,IELEM-1
JND1=((IL+2)/2)*L4+KN(NUM1+1)+(K3*IELEM+K2)*IELEM+K1
IF(KN1.NE.0) THEN
SG=REAL(SIGN(1,KN1))
FUNKNO(IND1)=FUNKNO(IND1)-SG*REAL(IL+1)*VOL0*V(1,K1+1)*
1 FUNKNO(JND1)/XX(K)
ENDIF
IF(KN2.NE.0) THEN
SG=REAL(SIGN(1,KN2))
FUNKNO(IND2)=FUNKNO(IND2)-SG*REAL(IL+1)*VOL0*
1 V(IELEM+1,K1+1)*FUNKNO(JND1)/XX(K)
ENDIF
JND1=((IL+2)/2)*L4+KN(NUM1+1)+(K3*IELEM+K1)*IELEM+K2
IF(KN3.NE.0) THEN
SG=REAL(SIGN(1,KN3))
FUNKNO(IND3)=FUNKNO(IND3)-SG*REAL(IL+1)*VOL0*V(1,K1+1)*
1 FUNKNO(JND1)/YY(K)
ENDIF
IF(KN4.NE.0) THEN
SG=REAL(SIGN(1,KN4))
FUNKNO(IND4)=FUNKNO(IND4)-SG*REAL(IL+1)*VOL0*
1 V(IELEM+1,K1+1)*FUNKNO(JND1)/YY(K)
ENDIF
JND1=((IL+2)/2)*L4+KN(NUM1+1)+(K1*IELEM+K3)*IELEM+K2
IF(KN5.NE.0) THEN
SG=REAL(SIGN(1,KN5))
FUNKNO(IND5)=FUNKNO(IND5)-SG*REAL(IL+1)*VOL0*V(1,K1+1)*
1 FUNKNO(JND1)/ZZ(K)
ENDIF
IF(KN6.NE.0) THEN
SG=REAL(SIGN(1,KN6))
FUNKNO(IND6)=FUNKNO(IND6)-SG*REAL(IL+1)*VOL0*
1 V(IELEM+1,K1+1)*FUNKNO(JND1)/ZZ(K)
ENDIF
130 CONTINUE
ENDIF
140 CONTINUE
145 CONTINUE
ENDIF
NUM1=NUM1+1+6*IELEM**2
NUM2=NUM2+6
150 CONTINUE
RETURN
END
|