1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
|
*DECK PNFH3E
SUBROUTINE PNFH3E (IL,NBMIX,NBLOS,IELEM,ICOL,NLF,NVD,NAN,L4,LL4F,
1 MAT,SIGTI,SIDE,ZZ,FRZ,QFR,IPERT,KN,LC,R,V,SUNKNO,FUNKNO)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Perform a one-group SPN flux iteration in hexagonal 3D geometry.
* Raviart-Thomas-Schneider method in hexagonal geometry.
*
*Copyright:
* Copyright (C) 2009 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IL current Legendre order.
* NBMIX number of mixtures.
* NBLOS number of lozenges per direction, taking into account
* mesh-splitting.
* IELEM degree of the Lagrangian finite elements: =1 (linear);
* =2 (parabolic); =3 (cubic); =4 (quartic).
* ICOL type of quadrature: =1 (analytical integration);
* =2 (Gauss-Lobatto); =3 (Gauss-Legendre).
* NLF number of Legendre orders for the flux (even number).
* NVD type of void boundary condition if NLF>0 and ICOL=3.
* NAN number of Legendre orders for the cross sections.
* L4 number of unknowns per energy group and per set of two
* Legendre orders.
* LL4F number of flux components.
* MAT index-number of the mixture type assigned to each volume.
* SIGTI inverse macroscopic cross sections ordered by mixture.
* SIGTI(:,NAN) generally contains the inverse total cross
* section only.
* SIDE side of an hexagon.
* ZZ Z-directed mesh spacings.
* FRZ volume fractions for the axial SYME boundary condition.
* QFR element-ordered boundary conditions.
* IPERT mixture permutation index.
* KN ADI permutation indices for the volumes and currents.
* LC order of the unit matrices.
* R unit Cartesian mass matrix.
* V unit nodal coupling matrix.
* SUNKNO sources.
* FUNKNO initial fluxes.
*
*Parameters: output
* FUNKNO right-hand-side of the linear system.
*
*-----------------------------------------------------------------------
*
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER IL,NBMIX,NBLOS,IELEM,ICOL,NLF,NVD,NAN,L4,LL4F,
1 MAT(3,NBLOS),IPERT(NBLOS),KN(NBLOS,3+6*(IELEM+2)*IELEM**2),LC
REAL SIGTI(NBMIX,NAN),SIDE,ZZ(3,NBLOS),FRZ(NBLOS),QFR(NBLOS,8),
1 R(LC,LC),V(LC,LC-1),SUNKNO(L4*NLF/2),FUNKNO(L4*NLF/2)
*----
* LOCAL VARIABLES
*----
REAL QQ(5,5)
DOUBLE PRECISION FFF,TTTT,UUUU,VOL0,GARSI,FACT,VAR1
*
IF(ICOL.EQ.3) THEN
IF(NVD.EQ.0) THEN
NZMAR=NLF+1
ELSE IF(NVD.EQ.1) THEN
NZMAR=NLF
ELSE IF(NVD.EQ.2) THEN
NZMAR=65
ENDIF
ELSE
NZMAR=65
ENDIF
DO 16 I0=1,IELEM
DO 15 J0=1,IELEM
FFF=0.0D0
DO 10 K0=2,IELEM
FFF=FFF+V(K0,I0)*V(K0,J0)/R(K0,K0)
10 CONTINUE
IF(ABS(FFF).LE.1.0E-6) FFF=0.0D0
QQ(I0,J0)=REAL(FFF)
15 CONTINUE
16 CONTINUE
JOFF=(IL/2)*L4
FACT=REAL(2*IL+1)
IF(MOD(IL,2).EQ.0) THEN
DO 20 I=1,L4
FUNKNO(JOFF+I)=SUNKNO(JOFF+I)
20 CONTINUE
ENDIF
*----
* COMPUTE THE SOLUTION AT ORDER IL.
*----
NELEH=(IELEM+1)*IELEM**2
TTTT=0.5D0*SQRT(3.D00)*SIDE*SIDE
NUM=0
DO 150 KEL=1,NBLOS
IF(IPERT(KEL).EQ.0) GO TO 150
NUM=NUM+1
DZ=ZZ(1,IPERT(KEL))
VOL0=TTTT*DZ*FRZ(KEL)
UUUU=SIDE*DZ*FRZ(KEL)
IF(MOD(IL,2).EQ.0) THEN
* EVEN PARITY EQUATION
IF(IL.GE.2) THEN
DO 34 K5=0,1 ! TWO LOZENGES PER HEXAGON
DO 33 K4=0,IELEM-1
DO 32 K3=0,IELEM-1
DO 31 K2=1,IELEM+1
KNW1=KN(NUM,3+K5*NELEH+(K4*IELEM+K3)*(IELEM+1)+K2)
KNX1=KN(NUM,3+(K5+2)*NELEH+(K4*IELEM+K3)*(IELEM+1)+K2)
KNY1=KN(NUM,3+(K5+4)*NELEH+(K4*IELEM+K3)*(IELEM+1)+K2)
INW1=JOFF+LL4F+ABS(KNW1)
INX1=JOFF+LL4F+ABS(KNX1)
INY1=JOFF+LL4F+ABS(KNY1)
DO 30 K1=0,IELEM-1
IF(V(K2,K1+1).EQ.0.0) GO TO 30
IF(K5.EQ.0) THEN
SSS=(-1.0)**K1
JND1=JOFF+(((NUM-1)*IELEM+K4)*IELEM+K3)*IELEM+K1+1
JND2=JOFF+(((KN(NUM,1)-1)*IELEM+K4)*IELEM+K3)*IELEM+K1+1
JND3=JOFF+(((KN(NUM,2)-1)*IELEM+K4)*IELEM+K3)*IELEM+K1+1
ELSE
SSS=1.0
JND1=JOFF+(((KN(NUM,1)-1)*IELEM+K4)*IELEM+K1)*IELEM+K3+1
JND2=JOFF+(((KN(NUM,2)-1)*IELEM+K4)*IELEM+K1)*IELEM+K3+1
JND3=JOFF+(((KN(NUM,3)-1)*IELEM+K4)*IELEM+K1)*IELEM+K3+1
ENDIF
VAR1=SSS*REAL(IL)*UUUU*V(K2,K1+1)
IF(KNW1.NE.0) THEN
SG=REAL(SIGN(1,KNW1))
FUNKNO(JND1)=FUNKNO(JND1)-SG*REAL(VAR1)*FUNKNO(INW1-L4)
ENDIF
IF(KNX1.NE.0) THEN
SG=REAL(SIGN(1,KNX1))
FUNKNO(JND2)=FUNKNO(JND2)-SG*REAL(VAR1)*FUNKNO(INX1-L4)
ENDIF
IF(KNY1.NE.0) THEN
SG=REAL(SIGN(1,KNY1))
FUNKNO(JND3)=FUNKNO(JND3)-SG*REAL(VAR1)*FUNKNO(INY1-L4)
ENDIF
30 CONTINUE
31 CONTINUE
32 CONTINUE
33 CONTINUE
34 CONTINUE
DO 43 K5=0,2 ! THREE LOZENGES PER HEXAGON
DO 42 K2=0,IELEM-1
DO 41 K1=0,IELEM-1
KNZ1=KN(NUM,3+6*NELEH+2*K5*IELEM**2+K2*IELEM+K1+1)
KNZ2=KN(NUM,3+6*NELEH+(2*K5+1)*IELEM**2+K2*IELEM+K1+1)
INZ1=JOFF+LL4F+ABS(KNZ1)
INZ2=JOFF+LL4F+ABS(KNZ2)
DO 40 K3=0,IELEM-1
IF(K5.EQ.0) THEN
JND1=JOFF+((((NUM-1)*IELEM)+K3)*IELEM+K2)*IELEM+K1+1
ELSE
JND1=JOFF+(((KN(NUM,K5)-1)*IELEM+K3)*IELEM+K2)*IELEM+K1+1
ENDIF
IF(KNZ1.NE.0) THEN
SG=REAL(SIGN(1,KNZ1))
VAR1=SG*(VOL0/DZ)*REAL(IL)*V(1,K3+1)*FUNKNO(INZ1-L4)
FUNKNO(JND1)=FUNKNO(JND1)-REAL(VAR1)
ENDIF
IF(KNZ2.NE.0) THEN
SG=REAL(SIGN(1,KNZ2))
VAR1=SG*(VOL0/DZ)*REAL(IL)*V(IELEM+1,K3+1)*
1 FUNKNO(INZ2-L4)
FUNKNO(JND1)=FUNKNO(JND1)-REAL(VAR1)
ENDIF
40 CONTINUE
41 CONTINUE
42 CONTINUE
43 CONTINUE
ENDIF
ELSE
* PARTIAL INVERSION OF THE ODD PARITY EQUATION. MODIFICATION
* OF THE EVEN PARITY EQUATION.
IBM=MAT(1,IPERT(KEL))
IF(IBM.EQ.0) GO TO 150
IF(IELEM.GT.1) THEN
DO 52 K3=0,IELEM-1
DO 51 K2=0,IELEM-1
DO 50 K1=0,IELEM-1
IF(QQ(K3+1,K3+1).EQ.0.0) GO TO 50
JND1=JOFF+(NUM-1)*IELEM**3+K3*IELEM**2+K2*IELEM+K1+1
JND2=JOFF+(KN(NUM,1)-1)*IELEM**3+K3*IELEM**2+K2*IELEM+K1+1
JND3=JOFF+(KN(NUM,2)-1)*IELEM**3+K3*IELEM**2+K2*IELEM+K1+1
IF(IL.GE.3) THEN
GARSI=SIGTI(IBM,MIN(IL-1,NAN))
KND1=JND1-L4
KND2=JND2-L4
KND3=JND3-L4
VAR1=(REAL(IL-1)*REAL(IL-2))*VOL0*QQ(K3+1,K3+1)*GARSI
1 /(REAL(2*IL-3)*DZ*DZ)
FUNKNO(JND1)=FUNKNO(JND1)-REAL(VAR1)*FUNKNO(KND1)
FUNKNO(JND2)=FUNKNO(JND2)-REAL(VAR1)*FUNKNO(KND2)
FUNKNO(JND3)=FUNKNO(JND3)-REAL(VAR1)*FUNKNO(KND3)
ENDIF
IF(IL.LE.NLF-3) THEN
GARSI=SIGTI(IBM,MIN(IL+1,NAN))
KND1=JND1+L4
KND2=JND2+L4
KND3=JND3+L4
VAR1=(REAL(IL)*REAL(IL+1))*VOL0*QQ(K3+1,K3+1)*GARSI
1 /(FACT*DZ*DZ)
FUNKNO(JND1)=FUNKNO(JND1)-REAL(VAR1)*FUNKNO(KND1)
FUNKNO(JND2)=FUNKNO(JND2)-REAL(VAR1)*FUNKNO(KND2)
FUNKNO(JND3)=FUNKNO(JND3)-REAL(VAR1)*FUNKNO(KND3)
ENDIF
50 CONTINUE
51 CONTINUE
52 CONTINUE
ENDIF
*
* ODD PARITY EQUATION
DO 93 K5=0,1 ! TWO LOZENGES PER HEXAGON
DO 92 K4=0,IELEM-1
DO 91 K3=0,IELEM-1
DO 90 K2=1,IELEM+1
KNW1=KN(NUM,3+K5*NELEH+(K4*IELEM+K3)*(IELEM+1)+K2)
KNX1=KN(NUM,3+(K5+2)*NELEH+(K4*IELEM+K3)*(IELEM+1)+K2)
KNY1=KN(NUM,3+(K5+4)*NELEH+(K4*IELEM+K3)*(IELEM+1)+K2)
INW1=JOFF+LL4F+ABS(KNW1)
INX1=JOFF+LL4F+ABS(KNX1)
INY1=JOFF+LL4F+ABS(KNY1)
IF(KNW1.NE.0) THEN
DO 60 IL2=1,NLF-1,2
IF(IL2.EQ.IL) GO TO 60
ZMARS=PNMAR2(NZMAR,IL2,IL)
INW2=(IL2/2)*L4+LL4F+ABS(KNW1)
IF((K2.EQ.1).AND.(K5.EQ.0)) THEN
VAR1=0.5*FACT*QFR(NUM,1)*ZMARS*FUNKNO(INW2)
FUNKNO(INW1)=FUNKNO(INW1)+REAL(VAR1)
ELSE IF((K2.EQ.IELEM+1).AND.(K5.EQ.1)) THEN
VAR1=0.5*FACT*QFR(NUM,2)*ZMARS*FUNKNO(INW2)
FUNKNO(INW1)=FUNKNO(INW1)+REAL(VAR1)
ENDIF
60 CONTINUE
ENDIF
IF(KNX1.NE.0) THEN
DO 70 IL2=1,NLF-1,2
IF(IL2.EQ.IL) GO TO 70
ZMARS=PNMAR2(NZMAR,IL2,IL)
INX2=(IL2/2)*L4+LL4F+ABS(KNX1)
IF((K2.EQ.1).AND.(K5.EQ.0)) THEN
VAR1=0.5*FACT*QFR(NUM,3)*ZMARS*FUNKNO(INX2)
FUNKNO(INX1)=FUNKNO(INX1)+REAL(VAR1)
ELSE IF((K2.EQ.IELEM+1).AND.(K5.EQ.1)) THEN
VAR1=0.5*FACT*QFR(NUM,4)*ZMARS*FUNKNO(INX2)
FUNKNO(INX1)=FUNKNO(INX1)+REAL(VAR1)
ENDIF
70 CONTINUE
ENDIF
IF(KNY1.NE.0) THEN
DO 80 IL2=1,NLF-1,2
IF(IL2.EQ.IL) GO TO 80
ZMARS=PNMAR2(NZMAR,IL2,IL)
INY2=(IL2/2)*L4+LL4F+ABS(KNY1)
IF((K2.EQ.1).AND.(K5.EQ.0)) THEN
VAR1=0.5*FACT*QFR(NUM,5)*ZMARS*FUNKNO(INY2)
FUNKNO(INY1)=FUNKNO(INY1)+REAL(VAR1)
ELSE IF((K2.EQ.IELEM+1).AND.(K5.EQ.1)) THEN
VAR1=0.5*FACT*QFR(NUM,6)*ZMARS*FUNKNO(INY2)
FUNKNO(INY1)=FUNKNO(INY1)+REAL(VAR1)
ENDIF
80 CONTINUE
ENDIF
90 CONTINUE
91 CONTINUE
92 CONTINUE
93 CONTINUE
DO 122 K5=0,2 ! THREE LOZENGES PER HEXAGON
DO 121 K2=0,IELEM-1
DO 120 K1=0,IELEM-1
KNZ1=KN(NUM,3+6*NELEH+2*K5*IELEM**2+K2*IELEM+K1+1)
KNZ2=KN(NUM,3+6*NELEH+(2*K5+1)*IELEM**2+K2*IELEM+K1+1)
INZ1=JOFF+LL4F+ABS(KNZ1)
INZ2=JOFF+LL4F+ABS(KNZ2)
IF((QFR(NUM,7).NE.0.0).AND.(KNZ1.NE.0)) THEN
* ZINF SIDE.
DO 100 IL2=1,NLF-1,2
IF(IL2.EQ.IL) GO TO 100
ZMARS=PNMAR2(NZMAR,IL2,IL)
INDL=(IL2/2)*L4+LL4F+ABS(KNZ1)
VAR1=0.5*FACT*QFR(NUM,7)*ZMARS*FUNKNO(INDL)
FUNKNO(INZ1)=FUNKNO(INZ1)+REAL(VAR1)
100 CONTINUE
ENDIF
IF((QFR(NUM,8).NE.0.0).AND.(KNZ2.NE.0)) THEN
* ZSUP SIDE.
DO 110 IL2=1,NLF-1,2
IF(IL2.EQ.IL) GO TO 110
ZMARS=PNMAR2(NZMAR,IL2,IL)
INDL=(IL2/2)*L4+LL4F+ABS(KNZ2)
VAR1=0.5*FACT*QFR(NUM,8)*ZMARS*FUNKNO(INDL)
FUNKNO(INZ2)=FUNKNO(INZ2)+REAL(VAR1)
110 CONTINUE
ENDIF
120 CONTINUE
121 CONTINUE
122 CONTINUE
*
IF(IL.LE.NLF-3) THEN
DO 134 K5=0,1 ! TWO LOZENGES PER HEXAGON
DO 133 K4=0,IELEM-1
DO 132 K3=0,IELEM-1
DO 131 K2=1,IELEM+1
KNW1=KN(NUM,3+K5*NELEH+(K4*IELEM+K3)*(IELEM+1)+K2)
KNX1=KN(NUM,3+(K5+2)*NELEH+(K4*IELEM+K3)*(IELEM+1)+K2)
KNY1=KN(NUM,3+(K5+4)*NELEH+(K4*IELEM+K3)*(IELEM+1)+K2)
INW1=JOFF+LL4F+ABS(KNW1)
INX1=JOFF+LL4F+ABS(KNX1)
INY1=JOFF+LL4F+ABS(KNY1)
DO 130 K1=0,IELEM-1
IF(V(K2,K1+1).EQ.0.0) GO TO 130
IF(K5.EQ.0) THEN
SSS=(-1.0)**K1
JND1=JOFF+(((NUM-1)*IELEM+K4)*IELEM+K3)*IELEM+K1+1
JND2=JOFF+(((KN(NUM,1)-1)*IELEM+K4)*IELEM+K3)*IELEM+K1+1
JND3=JOFF+(((KN(NUM,2)-1)*IELEM+K4)*IELEM+K3)*IELEM+K1+1
ELSE
SSS=1.0
JND1=JOFF+(((KN(NUM,1)-1)*IELEM+K4)*IELEM+K1)*IELEM+K3+1
JND2=JOFF+(((KN(NUM,2)-1)*IELEM+K4)*IELEM+K1)*IELEM+K3+1
JND3=JOFF+(((KN(NUM,3)-1)*IELEM+K4)*IELEM+K1)*IELEM+K3+1
ENDIF
VAR1=SSS*REAL(IL+1)*UUUU*V(K2,K1+1)
IF(KNW1.NE.0) THEN
SG=REAL(SIGN(1,KNW1))
FUNKNO(INW1)=FUNKNO(INW1)-SG*REAL(VAR1)*FUNKNO(JND1+L4)
ENDIF
IF(KNX1.NE.0) THEN
SG=REAL(SIGN(1,KNX1))
FUNKNO(INX1)=FUNKNO(INX1)-SG*REAL(VAR1)*FUNKNO(JND2+L4)
ENDIF
IF(KNY1.NE.0) THEN
SG=REAL(SIGN(1,KNY1))
FUNKNO(INY1)=FUNKNO(INY1)-SG*REAL(VAR1)*FUNKNO(JND3+L4)
ENDIF
130 CONTINUE
131 CONTINUE
132 CONTINUE
133 CONTINUE
134 CONTINUE
DO 143 K5=0,2 ! THREE LOZENGES PER HEXAGON
DO 142 K2=0,IELEM-1
DO 141 K1=0,IELEM-1
KNZ1=KN(NUM,3+6*NELEH+2*K5*IELEM**2+K2*IELEM+K1+1)
KNZ2=KN(NUM,3+6*NELEH+(2*K5+1)*IELEM**2+K2*IELEM+K1+1)
INZ1=JOFF+LL4F+ABS(KNZ1)
INZ2=JOFF+LL4F+ABS(KNZ2)
DO 140 K3=0,IELEM-1
IF(K5.EQ.0) THEN
JND1=JOFF+((((NUM-1)*IELEM)+K3)*IELEM+K2)*IELEM+K1+1
ELSE
JND1=JOFF+(((KN(NUM,K5)-1)*IELEM+K3)*IELEM+K2)*IELEM+K1+1
ENDIF
IF(KNZ1.NE.0) THEN
SG=REAL(SIGN(1,KNZ1))
VAR1=SG*(VOL0/DZ)*REAL(IL+1)*V(1,K3+1)*FUNKNO(JND1+L4)
FUNKNO(INZ1)=FUNKNO(INZ1)-REAL(VAR1)
ENDIF
IF(KNZ2.NE.0) THEN
SG=REAL(SIGN(1,KNZ2))
VAR1=SG*(VOL0/DZ)*REAL(IL+1)*V(IELEM+1,K3+1)*
1 FUNKNO(JND1+L4)
FUNKNO(INZ2)=FUNKNO(INZ2)-REAL(VAR1)
ENDIF
140 CONTINUE
141 CONTINUE
142 CONTINUE
143 CONTINUE
ENDIF
ENDIF
150 CONTINUE
RETURN
END
|