1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
|
*DECK PNFH2E
SUBROUTINE PNFH2E (IELEM,ICOL,NBLOS,SIDE,NLF,NVD,L4,IPERT,KN,
1 QFR,MU,IIMAX,LC,V,SYS,SUNKNO,FUNKNO,NADI)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Perform a one-group SPN flux iteration in hexagonal 2D geometry.
* Raviart-Thomas-Schneider method in hexagonal geometry.
*
*Copyright:
* Copyright (C) 2009 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IELEM degree of the Lagrangian finite elements: =1 (linear);
* =2 (parabolic); =3 (cubic); =4 (quartic).
* ICOL type of quadrature: =1 (analytical integration);
* =2 (Gauss-Lobatto); =3 (Gauss-Legendre).
* NBLOS number of lozenges per direction, taking into account
* mesh-splitting.
* SIDE side of the hexagons.
* NLF number of Legendre orders for the flux (even number).
* NVD type of void boundary condition if NLF>0 and ICOL=3.
* L4 number of unknowns per energy group and per set of two
* Legendre orders.
* IPERT mixture permutation index.
* KN element-ordered unknown list.
* QFR element-ordered boundary conditions.
* MU profiled storage indices for matrix SYS.
* IIMAX dimension of SYS.
* LC order of the unit matrices.
* V unit nodal coupling matrix.
* SYS LU factors of the system matrix.
* SUNKNO sources.
* FUNKNO initial fluxes.
* NADI number of inner ADI iterations.
*
*Parameters: output
* FUNKNO fluxes.
*
*-----------------------------------------------------------------------
*
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER IELEM,ICOL,NBLOS,NLF,NVD,L4,IPERT(NBLOS),
1 KN(NBLOS,4+6*IELEM*(IELEM+1)),MU(L4),IIMAX,LC,NADI
REAL SIDE,QFR(NBLOS,6),V(LC,LC-1),SYS(IIMAX),SUNKNO(L4*NLF/2),
1 FUNKNO(L4*NLF/2)
*
IF(ICOL.EQ.3) THEN
IF(NVD.EQ.0) THEN
NZMAR=NLF+1
ELSE IF(NVD.EQ.1) THEN
NZMAR=NLF
ELSE IF(NVD.EQ.2) THEN
NZMAR=65
ENDIF
ELSE
NZMAR=65
ENDIF
MUMAX=MU(L4)
NELEM=IELEM*(IELEM+1)
DO 170 IADI=1,MAX(1,NADI)
DO 160 IL=0,NLF-1
FACT=REAL(2*IL+1)
IF(MOD(IL,2).EQ.0) THEN
DO 10 I=1,L4
FUNKNO((IL/2)*L4+I)=SUNKNO((IL/2)*L4+I)
10 CONTINUE
ENDIF
*----
* COMPUTE THE SOLUTION AT ORDER IL.
*----
NUM=0
DO 150 KEL=1,NBLOS
IF(IPERT(KEL).EQ.0) GO TO 150
NUM=NUM+1
IF(MOD(IL,2).EQ.0) THEN
* EVEN PARITY EQUATION
IF(IL.GE.2) THEN
DO 33 K4=0,1
DO 32 K3=0,IELEM-1
DO 31 K2=1,IELEM+1
KNW1=KN(NUM,4+K4*NELEM+K3*(IELEM+1)+K2)
KNX1=KN(NUM,4+(K4+2)*NELEM+K3*(IELEM+1)+K2)
KNY1=KN(NUM,4+(K4+4)*NELEM+K3*(IELEM+1)+K2)
INW1=((IL-2)/2)*L4+ABS(KNW1)
INX1=((IL-2)/2)*L4+ABS(KNX1)
INY1=((IL-2)/2)*L4+ABS(KNY1)
DO 30 K1=0,IELEM-1
IF(V(K2,K1+1).EQ.0.0) GO TO 30
IF(K4.EQ.0) THEN
SSS=(-1.0)**K1
JND1=(IL/2)*L4+KN(NUM,1)+K3*IELEM+K1
JND2=(IL/2)*L4+KN(NUM,2)+K3*IELEM+K1
JND3=(IL/2)*L4+KN(NUM,3)+K3*IELEM+K1
ELSE
SSS=1.0
JND1=(IL/2)*L4+KN(NUM,2)+K1*IELEM+K3
JND2=(IL/2)*L4+KN(NUM,3)+K1*IELEM+K3
JND3=(IL/2)*L4+KN(NUM,4)+K1*IELEM+K3
ENDIF
IF(KNW1.NE.0) THEN
SG=REAL(SIGN(1,KNW1))
FUNKNO(JND1)=FUNKNO(JND1)-SG*SSS*REAL(IL)*SIDE*
1 V(K2,K1+1)*FUNKNO(INW1)
ENDIF
IF(KNX1.NE.0) THEN
SG=REAL(SIGN(1,KNX1))
FUNKNO(JND2)=FUNKNO(JND2)-SG*SSS*REAL(IL)*SIDE*
1 V(K2,K1+1)*FUNKNO(INX1)
ENDIF
IF(KNY1.NE.0) THEN
SG=REAL(SIGN(1,KNY1))
FUNKNO(JND3)=FUNKNO(JND3)-SG*SSS*REAL(IL)*SIDE*
1 V(K2,K1+1)*FUNKNO(INY1)
ENDIF
30 CONTINUE
31 CONTINUE
32 CONTINUE
33 CONTINUE
ENDIF
ELSE
* ODD PARITY EQUATION
DO 142 K4=0,1
DO 141 K3=0,IELEM-1
DO 140 K2=1,IELEM+1
KNW1=KN(NUM,4+K4*NELEM+K3*(IELEM+1)+K2)
KNX1=KN(NUM,4+(K4+2)*NELEM+K3*(IELEM+1)+K2)
KNY1=KN(NUM,4+(K4+4)*NELEM+K3*(IELEM+1)+K2)
INW1=(IL/2)*L4+ABS(KNW1)
INX1=(IL/2)*L4+ABS(KNX1)
INY1=(IL/2)*L4+ABS(KNY1)
IF(KNW1.NE.0) THEN
DO 90 IL2=1,NLF-1,2
IF(IL2.EQ.IL) GO TO 90
ZMARS=PNMAR2(NZMAR,IL2,IL)
INW2=(IL2/2)*L4+ABS(KNW1)
IF((K2.EQ.1).AND.(K4.EQ.0)) THEN
FUNKNO(INW1)=FUNKNO(INW1)+0.5*FACT*QFR(NUM,1)*ZMARS*
1 FUNKNO(INW2)
ELSE IF((K2.EQ.IELEM+1).AND.(K4.EQ.1)) THEN
FUNKNO(INW1)=FUNKNO(INW1)+0.5*FACT*QFR(NUM,2)*ZMARS*
1 FUNKNO(INW2)
ENDIF
90 CONTINUE
ENDIF
IF(KNX1.NE.0) THEN
DO 100 IL2=1,NLF-1,2
IF(IL2.EQ.IL) GO TO 100
ZMARS=PNMAR2(NZMAR,IL2,IL)
INX2=(IL2/2)*L4+ABS(KNX1)
IF((K2.EQ.1).AND.(K4.EQ.0)) THEN
FUNKNO(INX1)=FUNKNO(INX1)+0.5*FACT*QFR(NUM,3)*ZMARS*
1 FUNKNO(INX2)
ELSE IF((K2.EQ.IELEM+1).AND.(K4.EQ.1)) THEN
FUNKNO(INX1)=FUNKNO(INX1)+0.5*FACT*QFR(NUM,4)*ZMARS*
1 FUNKNO(INX2)
ENDIF
100 CONTINUE
ENDIF
IF(KNY1.NE.0) THEN
DO 110 IL2=1,NLF-1,2
IF(IL2.EQ.IL) GO TO 110
ZMARS=PNMAR2(NZMAR,IL2,IL)
INY2=(IL2/2)*L4+ABS(KNY1)
IF((K2.EQ.1).AND.(K4.EQ.0)) THEN
FUNKNO(INY1)=FUNKNO(INY1)+0.5*FACT*QFR(NUM,5)*ZMARS*
1 FUNKNO(INY2)
ELSE IF((K2.EQ.IELEM+1).AND.(K4.EQ.1)) THEN
FUNKNO(INY1)=FUNKNO(INY1)+0.5*FACT*QFR(NUM,6)*ZMARS*
1 FUNKNO(INY2)
ENDIF
110 CONTINUE
ENDIF
IF(IL.LE.NLF-3) THEN
DO 130 K1=0,IELEM-1
IF(V(K2,K1+1).EQ.0.0) GO TO 130
IF(K4.EQ.0) THEN
SSS=(-1.0)**K1
JND1=((IL+2)/2)*L4+KN(NUM,1)+K3*IELEM+K1
JND2=((IL+2)/2)*L4+KN(NUM,2)+K3*IELEM+K1
JND3=((IL+2)/2)*L4+KN(NUM,3)+K3*IELEM+K1
ELSE
SSS=1.0
JND1=((IL+2)/2)*L4+KN(NUM,2)+K1*IELEM+K3
JND2=((IL+2)/2)*L4+KN(NUM,3)+K1*IELEM+K3
JND3=((IL+2)/2)*L4+KN(NUM,4)+K1*IELEM+K3
ENDIF
IF(KNW1.NE.0) THEN
SG=REAL(SIGN(1,KNW1))
FUNKNO(INW1)=FUNKNO(INW1)-SG*SSS*REAL(IL+1)*SIDE*
1 V(K2,K1+1)*FUNKNO(JND1)
ENDIF
IF(KNX1.NE.0) THEN
SG=REAL(SIGN(1,KNX1))
FUNKNO(INX1)=FUNKNO(INX1)-SG*SSS*REAL(IL+1)*SIDE*
1 V(K2,K1+1)*FUNKNO(JND2)
ENDIF
IF(KNY1.NE.0) THEN
SG=REAL(SIGN(1,KNY1))
FUNKNO(INY1)=FUNKNO(INY1)-SG*SSS*REAL(IL+1)*SIDE*
1 V(K2,K1+1)*FUNKNO(JND3)
ENDIF
130 CONTINUE
ENDIF
140 CONTINUE
141 CONTINUE
142 CONTINUE
ENDIF
150 CONTINUE
IF(MOD(IL,2).EQ.1) THEN
CALL ALLDLS(L4,MU,SYS((IL/2)*MUMAX+1),FUNKNO((IL/2)*L4+1))
ENDIF
160 CONTINUE
170 CONTINUE
RETURN
END
|