summaryrefslogtreecommitdiff
path: root/Trivac/src/PNDM2E.f
blob: a501b70d6b11b05d806f205379caec8d41ea7ff8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
*DECK PNDM2E
      SUBROUTINE PNDM2E(ITY,NEL,L4,IELEM,ICOL,MAT,VOL,NBMIX,NLF,NVD,
     1 NAN,SIGT,SIGTI,XX,YY,KN,QFR,MU,IIMAX,LC,R,V,SYS)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Assembly of system matrices for a mixed-dual formulation of the
* simplified PN method in 2D Cartesian geometry.
*
*Copyright:
* Copyright (C) 2004 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* ITY     type of assembly:
*         =0: leakage-removal matrix assembly; =1: cross section matrix
*         assembly.
* NEL     number of finite elements.
* L4      number of unknowns per energy group and per set of two
*         Legendre orders.
* IELEM   degree of the Lagrangian finite elements: =1 (linear);
*         =2 (parabolic); =3 (cubic); =4 (quartic).
* ICOL    type of quadrature: =1 (analytical integration);
*         =2 (Gauss-Lobatto); =3 (Gauss-Legendre).
* MAT     mixture index assigned to each element.
* VOL     volume of each element.
* NBMIX   number of mixtures.
* NLF     number of Legendre orders for the flux (even number).
* NVD     type of void boundary condition if NLF>0 and ICOL=3.
* NAN     number of Legendre orders for the cross sections.
* SIGT    total minus self-scattering macroscopic cross sections.
*         SIGT(:,NAN) generally contains the total cross section only.
* SIGTI   inverse macroscopic cross sections ordered by mixture.
*         SIGTI(:,NAN) generally contains the inverse total cross
*         section only.
* XX      X-directed mesh spacings.
* YY      Y-directed mesh spacings.
* KN      element-ordered unknown list.
* QFR     element-ordered boundary conditions.
* MU      compressed storage mode indices.
* IIMAX   dimension of vector SYS.
* LC      order of the unit matrices.
* R       unit Cartesian mass matrix.
* V       unit nodal coupling matrix.
*
*Parameters: output
* SYS     system matrix.
*
*Reference:
* J.J. Lautard, D. Schneider, A.M. Baudron, "Mixed Dual Methods for
* Neutronic Reactor Core Calculations in the CRONOS System,"
* Proc. Int. Conf. on Mathematics and Computation, Reactor
* Physics and Environmental Analysis in Nuclear Applications,
* Madrid, Spain, September 27-30, 1999.
*
*-----------------------------------------------------------------------
*
*----
*  SUBROUTINE ARGUMENTS
*----
      INTEGER ITY,NEL,L4,IELEM,ICOL,MAT(NEL),NBMIX,NLF,NAN,KN(5*NEL),
     1 MU(L4),IIMAX,LC
      REAL VOL(NEL),SIGT(NBMIX,NAN),SIGTI(NBMIX,NAN),XX(NEL),YY(NEL),
     1 QFR(4*NEL),R(LC,LC),V(LC,LC-1),SYS(IIMAX)
*----
*  LOCAL VARIABLES
*----
      REAL QQ(5,5)
*
      IF(ICOL.EQ.3) THEN
         IF(NVD.EQ.0) THEN
            NZMAR=NLF+1
         ELSE IF(NVD.EQ.1) THEN
            NZMAR=NLF
         ELSE IF(NVD.EQ.2) THEN
            NZMAR=65
         ENDIF
      ELSE
         NZMAR=65
      ENDIF
      DO 12 I0=1,IELEM
      DO 11 J0=1,IELEM
      QQ(I0,J0)=0.0
      DO 10 K0=2,IELEM
      QQ(I0,J0)=QQ(I0,J0)+V(K0,I0)*V(K0,J0)/R(K0,K0)
   10 CONTINUE
   11 CONTINUE
   12 CONTINUE
      MUMAX=MU(L4)
      DO 100 IL=0,NLF-1
      ZMARS=0.0
      IF(MOD(IL,2).EQ.1) ZMARS=PNMAR2(NZMAR,IL,IL)
      FACT=REAL(2*IL+1)
*----
*  ASSEMBLY OF THE MAIN COEFFICIENT MATRIX AT ORDER IL.
*----
      NUM1=0
      NUM2=0
      KEY=0
      DO 90 K=1,NEL
      IBM=MAT(K)
      IF(IBM.EQ.0) GO TO 90
      VOL0=VOL(K)
      GARS=SIGT(IBM,MIN(IL+1,NAN))
      IF(MOD(IL,2).EQ.0) THEN
*        EVEN PARITY EQUATION.
         DO 25 I0=1,IELEM
         DO 20 J0=1,IELEM
         JND1=KN(NUM1+1)+(I0-1)*IELEM+J0-1
         KEY=(IL/2)*MUMAX+MU(JND1)
         SYS(KEY)=SYS(KEY)+FACT*VOL0*GARS
   20    CONTINUE
   25    CONTINUE
      ELSE
         GARSI=SIGTI(IBM,MIN(IL+1,NAN))
         DO 80 I0=1,IELEM
*        PARTIAL INVERSION OF THE ODD PARITY EQUATION. MODIFICATION OF
*        THE EVEN PARITY EQUATION.
         DO 45 J0=1,IELEM
         JND1=KN(NUM1+1)+(I0-1)*IELEM+J0-1
         DO 30 K0=1,J0
         IF(QQ(J0,K0).EQ.0.0) GO TO 30
         KND1=KN(NUM1+1)+(I0-1)*IELEM+K0-1
         KEY=(IL/2)*MUMAX+MU(JND1)-JND1+KND1
         SYS(KEY)=SYS(KEY)+(REAL(IL)**2)*VOL0*QQ(J0,K0)*GARSI/(FACT*
     1   XX(K)*XX(K))
         IF(IL.LE.NLF-3) THEN
            KEY=((IL+2)/2)*MUMAX+MU(JND1)-JND1+KND1
            SYS(KEY)=SYS(KEY)+(REAL(IL+1)**2)*VOL0*QQ(J0,K0)*GARSI/
     1      (FACT*XX(K)*XX(K))
         ENDIF
   30    CONTINUE
         JND1=KN(NUM1+1)+(J0-1)*IELEM+I0-1
         DO 40 K0=1,J0
         IF(QQ(J0,K0).EQ.0.0) GO TO 40
         KND1=KN(NUM1+1)+(K0-1)*IELEM+I0-1
         KEY=(IL/2)*MUMAX+MU(JND1)-JND1+KND1
         SYS(KEY)=SYS(KEY)+(REAL(IL)**2)*VOL0*QQ(J0,K0)*GARSI/(FACT*
     1   YY(K)*YY(K))
         IF(IL.LE.NLF-3) THEN
            KEY=((IL+2)/2)*MUMAX+MU(JND1)-JND1+KND1
            SYS(KEY)=SYS(KEY)+(REAL(IL+1)**2)*VOL0*QQ(J0,K0)*GARSI/
     1      (FACT*YY(K)*YY(K))
         ENDIF
   40    CONTINUE
   45    CONTINUE
*
*        ODD PARITY EQUATION.
         DO 55 IC=1,2
         IIC=1
         IF(IC.EQ.2) IIC=IELEM+1
         IND1=ABS(KN(NUM1+1+IC))+I0-1
         S1=REAL(SIGN(1,KN(NUM1+1+IC)))
         DO 50 JC=1,2
         JJC=1
         IF(JC.EQ.2) JJC=IELEM+1
         IND2=ABS(KN(NUM1+1+JC))+I0-1
         IF((KN(NUM1+1+IC).NE.0).AND.(KN(NUM1+1+JC).NE.0).AND.
     1      (IND1.GE.IND2)) THEN
            S2=REAL(SIGN(1,KN(NUM1+1+JC)))
            KEY=(IL/2)*MUMAX+MU(IND1)-IND1+IND2
            SYS(KEY)=SYS(KEY)-S1*S2*FACT*R(IIC,JJC)*VOL0*GARS
         ENDIF
   50    CONTINUE
   55    CONTINUE
         DO 65 IC=3,4
         IIC=1
         IF(IC.EQ.4) IIC=IELEM+1
         IND1=ABS(KN(NUM1+1+IC))+I0-1
         S1=REAL(SIGN(1,KN(NUM1+1+IC)))
         DO 60 JC=3,4
         JJC=1
         IF(JC.EQ.4) JJC=IELEM+1
         IND2=ABS(KN(NUM1+1+JC))+I0-1
         IF((KN(NUM1+1+IC).NE.0).AND.(KN(NUM1+1+JC).NE.0).AND.
     1      (IND1.GE.IND2)) THEN
            S2=REAL(SIGN(1,KN(NUM1+1+JC)))
            KEY=(IL/2)*MUMAX+MU(IND1)-IND1+IND2
            SYS(KEY)=SYS(KEY)-S1*S2*FACT*R(IIC,JJC)*VOL0*GARS
         ENDIF
   60    CONTINUE
   65    CONTINUE
         IF(ITY.EQ.1) GO TO 80
*
         IND1=ABS(KN(NUM1+2))+I0-1
         IND2=ABS(KN(NUM1+3))+I0-1
         IND3=ABS(KN(NUM1+4))+I0-1
         IND4=ABS(KN(NUM1+5))+I0-1
         IF((QFR(NUM2+1).NE.0.0).AND.(KN(NUM1+2).NE.0)) THEN
            KEY=(IL/2)*MUMAX+MU(IND1)
            SYS(KEY)=SYS(KEY)-0.5*FACT*QFR(NUM2+1)*ZMARS
         ENDIF
         IF((QFR(NUM2+2).NE.0.0).AND.(KN(NUM1+3).NE.0)) THEN
            KEY=(IL/2)*MUMAX+MU(IND2)
            SYS(KEY)=SYS(KEY)-0.5*FACT*QFR(NUM2+2)*ZMARS
         ENDIF
         IF((QFR(NUM2+3).NE.0.0).AND.(KN(NUM1+4).NE.0)) THEN
            KEY=(IL/2)*MUMAX+MU(IND3)
            SYS(KEY)=SYS(KEY)-0.5*FACT*QFR(NUM2+3)*ZMARS
         ENDIF
         IF((QFR(NUM2+4).NE.0.0).AND.(KN(NUM1+5).NE.0)) THEN
            KEY=(IL/2)*MUMAX+MU(IND4)
            SYS(KEY)=SYS(KEY)-0.5*FACT*QFR(NUM2+4)*ZMARS
         ENDIF
*
         DO 70 J0=1,IELEM
         JND1=KN(NUM1+1)+(I0-1)*IELEM+J0-1
         IF(KN(NUM1+2).NE.0) THEN
            S1=REAL(SIGN(1,KN(NUM1+2)))
            IF(JND1.GT.IND1) KEY=(IL/2)*MUMAX+MU(JND1)-JND1+IND1
            IF(JND1.LT.IND1) KEY=(IL/2)*MUMAX+MU(IND1)-IND1+JND1
            SYS(KEY)=SYS(KEY)+S1*REAL(IL)*VOL0*V(1,J0)/XX(K)
         ENDIF
         IF(KN(NUM1+3).NE.0) THEN
            S2=REAL(SIGN(1,KN(NUM1+3)))
            IF(JND1.GT.IND2) KEY=(IL/2)*MUMAX+MU(JND1)-JND1+IND2
            IF(JND1.LT.IND2) KEY=(IL/2)*MUMAX+MU(IND2)-IND2+JND1
            SYS(KEY)=SYS(KEY)+S2*REAL(IL)*VOL0*V(IELEM+1,J0)/XX(K)
         ENDIF
         JND1=KN(NUM1+1)+(J0-1)*IELEM+I0-1
         IF(KN(NUM1+4).NE.0) THEN
            S3=REAL(SIGN(1,KN(NUM1+4)))
            IF(JND1.GT.IND3) KEY=(IL/2)*MUMAX+MU(JND1)-JND1+IND3
            IF(JND1.LT.IND3) KEY=(IL/2)*MUMAX+MU(IND3)-IND3+JND1
            SYS(KEY)=SYS(KEY)+S3*REAL(IL)*VOL0*V(1,J0)/YY(K)
         ENDIF
         IF(KN(NUM1+5).NE.0) THEN
            S4=REAL(SIGN(1,KN(NUM1+5)))
            IF(JND1.GT.IND4) KEY=(IL/2)*MUMAX+MU(JND1)-JND1+IND4
            IF(JND1.LT.IND4) KEY=(IL/2)*MUMAX+MU(IND4)-IND4+JND1
            SYS(KEY)=SYS(KEY)+S4*REAL(IL)*VOL0*V(IELEM+1,J0)/YY(K)
         ENDIF
   70    CONTINUE
   80    CONTINUE
      ENDIF
      NUM1=NUM1+5
      NUM2=NUM2+4
   90 CONTINUE
  100 CONTINUE
      RETURN
      END