1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
|
*DECK PNDH2E
SUBROUTINE PNDH2E(ITY,IELEM,ICOL,NBLOS,L4,NBMIX,IIMAX,SIDE,MAT,
1 IPERT,SIGT,KN,QFR,NLF,NVD,NAN,MU,LC,R,V,H,SYS)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Assembly of a within-group (leakage and removal) or out-of-group
* system matrix in a Thomas-Raviart-Schneider (dual) finite element
* simplified PN method approximation (2D hexagonal geometry).
*
*Copyright:
* Copyright (C) 2009 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* ITY type of assembly:
* =0: leakage-removal matrix assembly; =1: cross section matrix
* assembly.
* IELEM degree of the Lagrangian finite elements: =1 (linear);
* =2 (parabolic); =3 (cubic); =4 (quartic).
* ICOL type of quadrature: =1 (analytical integration);
* =2 (Gauss-Lobatto); =3 (Gauss-Legendre).
* NBLOS number of lozenges per direction, taking into account
* mesh-splitting.
* L4 number of unknowns per energy group and per set of two
* Legendre orders.
* NBMIX number of mixtures.
* IIMAX allocated dimension of array SYS.
* SIDE side of the hexagons.
* MAT mixture index assigned to each element.
* SIGT total minus self-scattering macroscopic cross sections.
* SIGT(:,NAN) generally contains the total cross section only.
* KN element-ordered unknown list.
* QFR element-ordered boundary conditions.
* NLF number of Legendre orders for the flux (even number).
* NVD type of void boundary condition if NLF>0 and ICOL=3.
* NAN number of Legendre orders for the cross sections.
* MU indices used with compressed diagonal storage mode matrix SYS.
* LC order of the unit matrices.
* R Cartesian mass matrix.
* V nodal coupling matrix.
* H Piolat (hexagonal) coupling matrix.
*
*Parameters: output
* SYS system matrix.
*
*-----------------------------------------------------------------------
*
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER ITY,IELEM,ICOL,NBLOS,L4,NBMIX,IIMAX,MAT(3,NBLOS),
1 IPERT(NBLOS),KN(NBLOS,4+6*IELEM*(IELEM+1)),NLF,NVD,NAN,MU(L4),LC
REAL SIDE,SIGT(NBMIX,NAN),QFR(NBLOS,6),R(LC,LC),V(LC,LC-1),
1 H(LC,LC-1),SYS(IIMAX)
*----
* LOCAL VARIABLES
*----
PARAMETER(MAXIEL=3)
DOUBLE PRECISION CTRAN(MAXIEL*(MAXIEL+1),MAXIEL*(MAXIEL+1)),VAR1
*
TTTT=REAL(0.5D0*SQRT(3.D00)*SIDE*SIDE)
IF(IELEM.GT.MAXIEL) CALL XABORT('PNDH2E: MAXIEL OVERFLOW.')
NZMAR=65
IF(ICOL.EQ.3) THEN
IF(NVD.EQ.0) THEN
NZMAR=NLF+1
ELSE IF(NVD.EQ.1) THEN
NZMAR=NLF
ELSE IF(NVD.EQ.2) THEN
NZMAR=65
ENDIF
ENDIF
MUMAX=MU(L4)
NELEM=IELEM*(IELEM+1)
COEF=REAL(2.0D0*SIDE*SIDE/SQRT(3.D00))
*----
* COMPUTE THE TRANVERSE COUPLING PIOLAT UNIT MATRIX
*----
CTRAN(:MAXIEL*(MAXIEL+1),:MAXIEL*(MAXIEL+1))=0.0D0
CNORM=REAL(SIDE*SIDE/SQRT(3.D00))
I=0
DO 22 JS=1,IELEM
DO 21 JT=1,IELEM+1
J=0
I=I+1
SSS=1.0
DO 20 IT=1,IELEM
DO 10 IS=1,IELEM+1
J=J+1
CTRAN(I,J)=SSS*CNORM*H(IS,JS)*H(JT,IT)
10 CONTINUE
SSS=-SSS
20 CONTINUE
21 CONTINUE
22 CONTINUE
*----
* ASSEMBLY OF THE MAIN COEFFICIENT MATRIX AT ORDER IL.
*----
DO 100 IL=0,NLF-1
ZMARS=0.0
IF(MOD(IL,2).EQ.1) ZMARS=PNMAR2(NZMAR,IL,IL)
FACT=REAL(2*IL+1)
NUM=0
KEY=0
DO 90 KEL=1,NBLOS
IF(IPERT(KEL).EQ.0) GO TO 90
IBM=MAT(1,IPERT(KEL))
IF(IBM.EQ.0) GO TO 90
NUM=NUM+1
GARS=SIGT(IBM,MIN(IL+1,NAN))
IF(MOD(IL,2).EQ.0) THEN
* EVEN PARITY EQUATION.
DO 35 K2=0,IELEM-1
DO 30 K1=0,IELEM-1
JND1=KN(NUM,1)+K2*IELEM+K1
JND2=KN(NUM,2)+K2*IELEM+K1
JND3=KN(NUM,3)+K2*IELEM+K1
KEY=(IL/2)*MUMAX+MU(JND1)
SYS(KEY)=SYS(KEY)+FACT*TTTT*GARS
KEY=(IL/2)*MUMAX+MU(JND2)
SYS(KEY)=SYS(KEY)+FACT*TTTT*GARS
KEY=(IL/2)*MUMAX+MU(JND3)
SYS(KEY)=SYS(KEY)+FACT*TTTT*GARS
30 CONTINUE
35 CONTINUE
ELSE
* ODD PARITY EQUATION.
DO 52 K4=0,1
DO 51 K3=0,IELEM-1
DO 50 K2=1,IELEM+1
KNW1=KN(NUM,4+K4*NELEM+K3*(IELEM+1)+K2)
KNX1=KN(NUM,4+(K4+2)*NELEM+K3*(IELEM+1)+K2)
KNY1=KN(NUM,4+(K4+4)*NELEM+K3*(IELEM+1)+K2)
INW1=ABS(KNW1)
INX1=ABS(KNX1)
INY1=ABS(KNY1)
DO 40 K1=1,IELEM+1
KNW2=KN(NUM,4+K4*NELEM+K3*(IELEM+1)+K1)
KNX2=KN(NUM,4+(K4+2)*NELEM+K3*(IELEM+1)+K1)
KNY2=KN(NUM,4+(K4+4)*NELEM+K3*(IELEM+1)+K1)
INW2=ABS(KNW2)
INX2=ABS(KNX2)
INY2=ABS(KNY2)
IF((KNW2.NE.0).AND.(KNW1.NE.0).AND.(INW1.GE.INW2)) THEN
KEY=(IL/2)*MUMAX+MU(INW1)-INW1+INW2
SG=REAL(SIGN(1,KNW1)*SIGN(1,KNW2))
SYS(KEY)=SYS(KEY)-SG*FACT*COEF*GARS*R(K2,K1)
ENDIF
IF((KNX2.NE.0).AND.(KNX1.NE.0).AND.(INX1.GE.INX2)) THEN
KEY=(IL/2)*MUMAX+MU(INX1)-INX1+INX2
SG=REAL(SIGN(1,KNX1)*SIGN(1,KNX2))
SYS(KEY)=SYS(KEY)-SG*FACT*COEF*GARS*R(K2,K1)
ENDIF
IF((KNY2.NE.0).AND.(KNY1.NE.0).AND.(INY1.GE.INY2)) THEN
KEY=(IL/2)*MUMAX+MU(INY1)-INY1+INY2
SG=REAL(SIGN(1,KNY1)*SIGN(1,KNY2))
SYS(KEY)=SYS(KEY)-SG*FACT*COEF*GARS*R(K2,K1)
ENDIF
40 CONTINUE
IF(ITY.EQ.0) THEN
IF(KNW1.NE.0) THEN
KEY=(IL/2)*MUMAX+MU(INW1)
IF((K2.EQ.1).AND.(K4.EQ.0)) THEN
SYS(KEY)=SYS(KEY)-0.5*FACT*QFR(NUM,1)*ZMARS
ELSE IF((K2.EQ.IELEM+1).AND.(K4.EQ.1)) THEN
SYS(KEY)=SYS(KEY)-0.5*FACT*QFR(NUM,2)*ZMARS
ENDIF
ENDIF
IF(KNX1.NE.0) THEN
KEY=(IL/2)*MUMAX+MU(INX1)
IF((K2.EQ.1).AND.(K4.EQ.0)) THEN
SYS(KEY)=SYS(KEY)-0.5*FACT*QFR(NUM,3)*ZMARS
ELSE IF((K2.EQ.IELEM+1).AND.(K4.EQ.1)) THEN
SYS(KEY)=SYS(KEY)-0.5*FACT*QFR(NUM,4)*ZMARS
ENDIF
ENDIF
IF(KNY1.NE.0) THEN
KEY=(IL/2)*MUMAX+MU(INY1)
IF((K2.EQ.1).AND.(K4.EQ.0)) THEN
SYS(KEY)=SYS(KEY)-0.5*FACT*QFR(NUM,5)*ZMARS
ELSE IF((K2.EQ.IELEM+1).AND.(K4.EQ.1)) THEN
SYS(KEY)=SYS(KEY)-0.5*FACT*QFR(NUM,6)*ZMARS
ENDIF
ENDIF
ENDIF
50 CONTINUE
51 CONTINUE
52 CONTINUE
*
ITRS=0
DO I=1,NBLOS
IF(KN(I,1).EQ.KN(NUM,4)) THEN
ITRS=I
GO TO 60
ENDIF
ENDDO
CALL XABORT('PNDH2E: ITRS FAILURE.')
60 DO 75 I=1,NELEM
KNW1=KN(ITRS,4+I)
KNX1=KN(NUM,4+2*NELEM+I)
KNY1=KN(NUM,4+4*NELEM+I)
INW1=ABS(KNW1)
INX1=ABS(KNX1)
INY1=ABS(KNY1)
DO 70 J=1,NELEM
KNW2=KN(NUM,4+NELEM+J)
KNX2=KN(NUM,4+3*NELEM+J)
KNY2=KN(NUM,4+5*NELEM+J)
INW2=ABS(KNW2)
INX2=ABS(KNX2)
INY2=ABS(KNY2)
VAR1=FACT*GARS*CTRAN(I,J)
IF((KNY2.NE.0).AND.(KNW1.NE.0).AND.(INW1.LT.INY2)) THEN
KEY=(IL/2)*MUMAX+MU(INY2)-INY2+INW1
SG=REAL(SIGN(1,KNW1)*SIGN(1,KNY2))
SYS(KEY)=SYS(KEY)-SG*REAL(VAR1) ! y w
ELSE IF((KNY2.NE.0).AND.(KNW1.NE.0).AND.(INW1.GT.INY2)) THEN
KEY=(IL/2)*MUMAX+MU(INW1)-INW1+INY2
SG=REAL(SIGN(1,KNW1)*SIGN(1,KNY2))
SYS(KEY)=SYS(KEY)-SG*REAL(VAR1) ! w y
ENDIF
IF((KNW2.NE.0).AND.(KNX1.NE.0).AND.(INW2.LT.INX1)) THEN
KEY=(IL/2)*MUMAX+MU(INX1)-INX1+INW2
SG=REAL(SIGN(1,KNX1)*SIGN(1,KNW2))
SYS(KEY)=SYS(KEY)-SG*REAL(VAR1) ! x w
ELSE IF((KNW2.NE.0).AND.(KNX1.NE.0).AND.(INW2.GT.INX1)) THEN
KEY=(IL/2)*MUMAX+MU(INW2)-INW2+INX1
SG=REAL(SIGN(1,KNX1)*SIGN(1,KNW2))
SYS(KEY)=SYS(KEY)-SG*REAL(VAR1) ! w x
ENDIF
IF((KNX2.NE.0).AND.(KNY1.NE.0).AND.(INX2.LT.INY1)) THEN
KEY=(IL/2)*MUMAX+MU(INY1)-INY1+INX2
SG=REAL(SIGN(1,KNY1)*SIGN(1,KNX2))
SYS(KEY)=SYS(KEY)-SG*REAL(VAR1) ! y x
ELSE IF((KNX2.NE.0).AND.(KNY1.NE.0).AND.(INX2.GT.INY1)) THEN
KEY=(IL/2)*MUMAX+MU(INX2)-INX2+INY1
SG=REAL(SIGN(1,KNY1)*SIGN(1,KNX2))
SYS(KEY)=SYS(KEY)-SG*REAL(VAR1) ! x y
ENDIF
70 CONTINUE
75 CONTINUE
*
IF(ITY.EQ.0) THEN
DO 83 K4=0,1
DO 82 K3=0,IELEM-1
DO 81 K2=1,IELEM+1
KNW1=KN(NUM,4+K4*NELEM+K3*(IELEM+1)+K2)
KNX1=KN(NUM,4+(K4+2)*NELEM+K3*(IELEM+1)+K2)
KNY1=KN(NUM,4+(K4+4)*NELEM+K3*(IELEM+1)+K2)
INW1=ABS(KNW1)
INX1=ABS(KNX1)
INY1=ABS(KNY1)
DO 80 K1=0,IELEM-1
IF(V(K2,K1+1).EQ.0.0) GO TO 80
IF(K4.EQ.0) THEN
SSS=(-1.0)**K1
JND1=KN(NUM,1)+K3*IELEM+K1
JND2=KN(NUM,2)+K3*IELEM+K1
JND3=KN(NUM,3)+K3*IELEM+K1
ELSE
SSS=1.0
JND1=KN(NUM,2)+K1*IELEM+K3
JND2=KN(NUM,3)+K1*IELEM+K3
JND3=KN(NUM,4)+K1*IELEM+K3
ENDIF
IF(KNW1.NE.0) THEN
IF(JND1.GT.INW1) KEY=(IL/2)*MUMAX+MU(JND1)-JND1+INW1
IF(JND1.LT.INW1) KEY=(IL/2)*MUMAX+MU(INW1)-INW1+JND1
SG=REAL(SIGN(1,KNW1))
SYS(KEY)=SYS(KEY)+SG*SSS*REAL(IL)*SIDE*V(K2,K1+1)
ENDIF
IF(KNX1.NE.0) THEN
IF(JND2.GT.INX1) KEY=(IL/2)*MUMAX+MU(JND2)-JND2+INX1
IF(JND2.LT.INX1) KEY=(IL/2)*MUMAX+MU(INX1)-INX1+JND2
SG=REAL(SIGN(1,KNX1))
SYS(KEY)=SYS(KEY)+SG*SSS*REAL(IL)*SIDE*V(K2,K1+1)
ENDIF
IF(KNY1.NE.0) THEN
IF(JND3.GT.INY1) KEY=(IL/2)*MUMAX+MU(JND3)-JND3+INY1
IF(JND3.LT.INY1) KEY=(IL/2)*MUMAX+MU(INY1)-INY1+JND3
SG=REAL(SIGN(1,KNY1))
SYS(KEY)=SYS(KEY)+SG*SSS*REAL(IL)*SIDE*V(K2,K1+1)
ENDIF
80 CONTINUE
81 CONTINUE
82 CONTINUE
83 CONTINUE
ENDIF
ENDIF
90 CONTINUE
100 CONTINUE
RETURN
END
|