summaryrefslogtreecommitdiff
path: root/Trivac/src/PNDH2E.f
blob: 9614391451a9cd9932c334f75c88fe8cba5424a9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
*DECK PNDH2E
      SUBROUTINE PNDH2E(ITY,IELEM,ICOL,NBLOS,L4,NBMIX,IIMAX,SIDE,MAT,
     1 IPERT,SIGT,KN,QFR,NLF,NVD,NAN,MU,LC,R,V,H,SYS)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Assembly of a within-group (leakage and removal) or out-of-group
* system matrix in a Thomas-Raviart-Schneider (dual) finite element
* simplified PN method approximation (2D hexagonal geometry).
*
*Copyright:
* Copyright (C) 2009 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* ITY     type of assembly:
*         =0: leakage-removal matrix assembly; =1: cross section matrix
*         assembly.
* IELEM   degree of the Lagrangian finite elements: =1 (linear);
*         =2 (parabolic); =3 (cubic); =4 (quartic).
* ICOL    type of quadrature: =1 (analytical integration);
*         =2 (Gauss-Lobatto); =3 (Gauss-Legendre).
* NBLOS   number of lozenges per direction, taking into account
*         mesh-splitting.
* L4      number of unknowns per energy group and per set of two
*         Legendre orders.
* NBMIX   number of mixtures.
* IIMAX   allocated dimension of array SYS.
* SIDE    side of the hexagons.
* MAT     mixture index assigned to each element.
* SIGT    total minus self-scattering macroscopic cross sections.
*         SIGT(:,NAN) generally contains the total cross section only.
* KN      element-ordered unknown list.
* QFR     element-ordered boundary conditions.
* NLF     number of Legendre orders for the flux (even number).
* NVD     type of void boundary condition if NLF>0 and ICOL=3.
* NAN     number of Legendre orders for the cross sections.
* MU      indices used with compressed diagonal storage mode matrix SYS.
* LC      order of the unit matrices.
* R       Cartesian mass matrix.
* V       nodal coupling matrix.
* H       Piolat (hexagonal) coupling matrix.
*
*Parameters: output
* SYS     system matrix.
*
*-----------------------------------------------------------------------
*
*----
*  SUBROUTINE ARGUMENTS
*----
      INTEGER ITY,IELEM,ICOL,NBLOS,L4,NBMIX,IIMAX,MAT(3,NBLOS),
     1 IPERT(NBLOS),KN(NBLOS,4+6*IELEM*(IELEM+1)),NLF,NVD,NAN,MU(L4),LC
      REAL SIDE,SIGT(NBMIX,NAN),QFR(NBLOS,6),R(LC,LC),V(LC,LC-1),
     1 H(LC,LC-1),SYS(IIMAX)
*----
*  LOCAL VARIABLES
*----
      PARAMETER(MAXIEL=3)
      DOUBLE PRECISION CTRAN(MAXIEL*(MAXIEL+1),MAXIEL*(MAXIEL+1)),VAR1
*
      TTTT=REAL(0.5D0*SQRT(3.D00)*SIDE*SIDE)
      IF(IELEM.GT.MAXIEL) CALL XABORT('PNDH2E: MAXIEL OVERFLOW.')
      NZMAR=65
      IF(ICOL.EQ.3) THEN
         IF(NVD.EQ.0) THEN
            NZMAR=NLF+1
         ELSE IF(NVD.EQ.1) THEN
            NZMAR=NLF
         ELSE IF(NVD.EQ.2) THEN
            NZMAR=65
         ENDIF
      ENDIF
      MUMAX=MU(L4)
      NELEM=IELEM*(IELEM+1)
      COEF=REAL(2.0D0*SIDE*SIDE/SQRT(3.D00))
*----
*  COMPUTE THE TRANVERSE COUPLING PIOLAT UNIT MATRIX
*----
      CTRAN(:MAXIEL*(MAXIEL+1),:MAXIEL*(MAXIEL+1))=0.0D0
      CNORM=REAL(SIDE*SIDE/SQRT(3.D00))
      I=0
      DO 22 JS=1,IELEM
      DO 21 JT=1,IELEM+1
      J=0
      I=I+1
      SSS=1.0
      DO 20 IT=1,IELEM
      DO 10 IS=1,IELEM+1
      J=J+1
      CTRAN(I,J)=SSS*CNORM*H(IS,JS)*H(JT,IT)
   10 CONTINUE
      SSS=-SSS
   20 CONTINUE
   21 CONTINUE
   22 CONTINUE
*----
*  ASSEMBLY OF THE MAIN COEFFICIENT MATRIX AT ORDER IL.
*----
      DO 100 IL=0,NLF-1
      ZMARS=0.0
      IF(MOD(IL,2).EQ.1) ZMARS=PNMAR2(NZMAR,IL,IL)
      FACT=REAL(2*IL+1)
      NUM=0
      KEY=0
      DO 90 KEL=1,NBLOS
      IF(IPERT(KEL).EQ.0) GO TO 90
      IBM=MAT(1,IPERT(KEL))
      IF(IBM.EQ.0) GO TO 90
      NUM=NUM+1
      GARS=SIGT(IBM,MIN(IL+1,NAN))
      IF(MOD(IL,2).EQ.0) THEN
*        EVEN PARITY EQUATION.
         DO 35 K2=0,IELEM-1
         DO 30 K1=0,IELEM-1
         JND1=KN(NUM,1)+K2*IELEM+K1
         JND2=KN(NUM,2)+K2*IELEM+K1
         JND3=KN(NUM,3)+K2*IELEM+K1
         KEY=(IL/2)*MUMAX+MU(JND1)
         SYS(KEY)=SYS(KEY)+FACT*TTTT*GARS
         KEY=(IL/2)*MUMAX+MU(JND2)
         SYS(KEY)=SYS(KEY)+FACT*TTTT*GARS
         KEY=(IL/2)*MUMAX+MU(JND3)
         SYS(KEY)=SYS(KEY)+FACT*TTTT*GARS
   30    CONTINUE
   35    CONTINUE
      ELSE
*        ODD PARITY EQUATION.
         DO 52 K4=0,1
         DO 51 K3=0,IELEM-1
         DO 50 K2=1,IELEM+1
         KNW1=KN(NUM,4+K4*NELEM+K3*(IELEM+1)+K2)
         KNX1=KN(NUM,4+(K4+2)*NELEM+K3*(IELEM+1)+K2)
         KNY1=KN(NUM,4+(K4+4)*NELEM+K3*(IELEM+1)+K2)
         INW1=ABS(KNW1)
         INX1=ABS(KNX1)
         INY1=ABS(KNY1)
         DO 40 K1=1,IELEM+1
         KNW2=KN(NUM,4+K4*NELEM+K3*(IELEM+1)+K1)
         KNX2=KN(NUM,4+(K4+2)*NELEM+K3*(IELEM+1)+K1)
         KNY2=KN(NUM,4+(K4+4)*NELEM+K3*(IELEM+1)+K1)
         INW2=ABS(KNW2)
         INX2=ABS(KNX2)
         INY2=ABS(KNY2)
         IF((KNW2.NE.0).AND.(KNW1.NE.0).AND.(INW1.GE.INW2)) THEN
            KEY=(IL/2)*MUMAX+MU(INW1)-INW1+INW2
            SG=REAL(SIGN(1,KNW1)*SIGN(1,KNW2))
            SYS(KEY)=SYS(KEY)-SG*FACT*COEF*GARS*R(K2,K1)
         ENDIF
         IF((KNX2.NE.0).AND.(KNX1.NE.0).AND.(INX1.GE.INX2)) THEN
            KEY=(IL/2)*MUMAX+MU(INX1)-INX1+INX2
            SG=REAL(SIGN(1,KNX1)*SIGN(1,KNX2))
            SYS(KEY)=SYS(KEY)-SG*FACT*COEF*GARS*R(K2,K1)
         ENDIF
         IF((KNY2.NE.0).AND.(KNY1.NE.0).AND.(INY1.GE.INY2)) THEN
            KEY=(IL/2)*MUMAX+MU(INY1)-INY1+INY2
            SG=REAL(SIGN(1,KNY1)*SIGN(1,KNY2))
            SYS(KEY)=SYS(KEY)-SG*FACT*COEF*GARS*R(K2,K1)
         ENDIF
   40    CONTINUE
         IF(ITY.EQ.0) THEN
            IF(KNW1.NE.0) THEN
               KEY=(IL/2)*MUMAX+MU(INW1)
               IF((K2.EQ.1).AND.(K4.EQ.0)) THEN
                  SYS(KEY)=SYS(KEY)-0.5*FACT*QFR(NUM,1)*ZMARS
               ELSE IF((K2.EQ.IELEM+1).AND.(K4.EQ.1)) THEN
                  SYS(KEY)=SYS(KEY)-0.5*FACT*QFR(NUM,2)*ZMARS
               ENDIF
            ENDIF
            IF(KNX1.NE.0) THEN
               KEY=(IL/2)*MUMAX+MU(INX1)
               IF((K2.EQ.1).AND.(K4.EQ.0)) THEN
                  SYS(KEY)=SYS(KEY)-0.5*FACT*QFR(NUM,3)*ZMARS
               ELSE IF((K2.EQ.IELEM+1).AND.(K4.EQ.1)) THEN
                  SYS(KEY)=SYS(KEY)-0.5*FACT*QFR(NUM,4)*ZMARS
               ENDIF
            ENDIF
            IF(KNY1.NE.0) THEN
               KEY=(IL/2)*MUMAX+MU(INY1)
               IF((K2.EQ.1).AND.(K4.EQ.0)) THEN
                  SYS(KEY)=SYS(KEY)-0.5*FACT*QFR(NUM,5)*ZMARS
               ELSE IF((K2.EQ.IELEM+1).AND.(K4.EQ.1)) THEN
                  SYS(KEY)=SYS(KEY)-0.5*FACT*QFR(NUM,6)*ZMARS
               ENDIF
            ENDIF
         ENDIF
   50    CONTINUE
   51    CONTINUE
   52    CONTINUE
*
         ITRS=0
         DO I=1,NBLOS
            IF(KN(I,1).EQ.KN(NUM,4)) THEN
               ITRS=I
               GO TO 60
            ENDIF
         ENDDO
         CALL XABORT('PNDH2E: ITRS FAILURE.')
   60    DO 75 I=1,NELEM
         KNW1=KN(ITRS,4+I)
         KNX1=KN(NUM,4+2*NELEM+I)
         KNY1=KN(NUM,4+4*NELEM+I)
         INW1=ABS(KNW1)
         INX1=ABS(KNX1)
         INY1=ABS(KNY1)
         DO 70 J=1,NELEM
         KNW2=KN(NUM,4+NELEM+J)
         KNX2=KN(NUM,4+3*NELEM+J)
         KNY2=KN(NUM,4+5*NELEM+J)
         INW2=ABS(KNW2)
         INX2=ABS(KNX2)
         INY2=ABS(KNY2)
         VAR1=FACT*GARS*CTRAN(I,J)
         IF((KNY2.NE.0).AND.(KNW1.NE.0).AND.(INW1.LT.INY2)) THEN
            KEY=(IL/2)*MUMAX+MU(INY2)-INY2+INW1
            SG=REAL(SIGN(1,KNW1)*SIGN(1,KNY2))
            SYS(KEY)=SYS(KEY)-SG*REAL(VAR1) ! y w
         ELSE IF((KNY2.NE.0).AND.(KNW1.NE.0).AND.(INW1.GT.INY2)) THEN
            KEY=(IL/2)*MUMAX+MU(INW1)-INW1+INY2
            SG=REAL(SIGN(1,KNW1)*SIGN(1,KNY2))
            SYS(KEY)=SYS(KEY)-SG*REAL(VAR1) ! w y
         ENDIF
         IF((KNW2.NE.0).AND.(KNX1.NE.0).AND.(INW2.LT.INX1)) THEN
            KEY=(IL/2)*MUMAX+MU(INX1)-INX1+INW2
            SG=REAL(SIGN(1,KNX1)*SIGN(1,KNW2))
            SYS(KEY)=SYS(KEY)-SG*REAL(VAR1) ! x w
         ELSE IF((KNW2.NE.0).AND.(KNX1.NE.0).AND.(INW2.GT.INX1)) THEN
            KEY=(IL/2)*MUMAX+MU(INW2)-INW2+INX1
            SG=REAL(SIGN(1,KNX1)*SIGN(1,KNW2))
            SYS(KEY)=SYS(KEY)-SG*REAL(VAR1) ! w x
         ENDIF
         IF((KNX2.NE.0).AND.(KNY1.NE.0).AND.(INX2.LT.INY1)) THEN
            KEY=(IL/2)*MUMAX+MU(INY1)-INY1+INX2
            SG=REAL(SIGN(1,KNY1)*SIGN(1,KNX2))
            SYS(KEY)=SYS(KEY)-SG*REAL(VAR1) ! y x
         ELSE IF((KNX2.NE.0).AND.(KNY1.NE.0).AND.(INX2.GT.INY1)) THEN
            KEY=(IL/2)*MUMAX+MU(INX2)-INX2+INY1
            SG=REAL(SIGN(1,KNY1)*SIGN(1,KNX2))
            SYS(KEY)=SYS(KEY)-SG*REAL(VAR1) ! x y
         ENDIF
   70    CONTINUE
   75    CONTINUE
*
         IF(ITY.EQ.0) THEN
            DO 83 K4=0,1
            DO 82 K3=0,IELEM-1
            DO 81 K2=1,IELEM+1
            KNW1=KN(NUM,4+K4*NELEM+K3*(IELEM+1)+K2)
            KNX1=KN(NUM,4+(K4+2)*NELEM+K3*(IELEM+1)+K2)
            KNY1=KN(NUM,4+(K4+4)*NELEM+K3*(IELEM+1)+K2)
            INW1=ABS(KNW1)
            INX1=ABS(KNX1)
            INY1=ABS(KNY1)
            DO 80 K1=0,IELEM-1
            IF(V(K2,K1+1).EQ.0.0) GO TO 80
            IF(K4.EQ.0) THEN
               SSS=(-1.0)**K1
               JND1=KN(NUM,1)+K3*IELEM+K1
               JND2=KN(NUM,2)+K3*IELEM+K1
               JND3=KN(NUM,3)+K3*IELEM+K1
            ELSE
               SSS=1.0
               JND1=KN(NUM,2)+K1*IELEM+K3
               JND2=KN(NUM,3)+K1*IELEM+K3
               JND3=KN(NUM,4)+K1*IELEM+K3
            ENDIF
            IF(KNW1.NE.0) THEN
               IF(JND1.GT.INW1) KEY=(IL/2)*MUMAX+MU(JND1)-JND1+INW1
               IF(JND1.LT.INW1) KEY=(IL/2)*MUMAX+MU(INW1)-INW1+JND1
               SG=REAL(SIGN(1,KNW1))
               SYS(KEY)=SYS(KEY)+SG*SSS*REAL(IL)*SIDE*V(K2,K1+1)
            ENDIF
            IF(KNX1.NE.0) THEN
               IF(JND2.GT.INX1) KEY=(IL/2)*MUMAX+MU(JND2)-JND2+INX1
               IF(JND2.LT.INX1) KEY=(IL/2)*MUMAX+MU(INX1)-INX1+JND2
               SG=REAL(SIGN(1,KNX1))
               SYS(KEY)=SYS(KEY)+SG*SSS*REAL(IL)*SIDE*V(K2,K1+1)
            ENDIF
            IF(KNY1.NE.0) THEN
               IF(JND3.GT.INY1) KEY=(IL/2)*MUMAX+MU(JND3)-JND3+INY1
               IF(JND3.LT.INY1) KEY=(IL/2)*MUMAX+MU(INY1)-INY1+JND3
               SG=REAL(SIGN(1,KNY1))
               SYS(KEY)=SYS(KEY)+SG*SSS*REAL(IL)*SIDE*V(K2,K1+1)
            ENDIF
   80       CONTINUE
   81       CONTINUE
   82       CONTINUE
   83       CONTINUE
         ENDIF
      ENDIF
   90 CONTINUE
  100 CONTINUE
      RETURN
      END