summaryrefslogtreecommitdiff
path: root/Trivac/src/PN3HWW.f
blob: bc49e105cdf6534e246329586122b3fabead4fbc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
*DECK PN3HWW
      SUBROUTINE PN3HWW(NBMIX,NBLOS,IELEM,ICOL,NLF,NVD,NAN,LL4F,LL4W,
     1 MAT,SIGT,SIGTI,SIDE,ZZ,FRZ,QFR,IPERT,KN,MUW,IPBBW,LC,R,V,BBW,
     2 TTF,AW,C11W)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Assembly of system matrices for a Thomas-Raviart-Schneider (dual)
* finite element method in hexagonal 3-D simplified PN approximation.
* Note: system matrices should be initialized by the calling program.
*
*Copyright:
* Copyright (C) 2009 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* NBMIX   number of mixtures.
* NBLOS   number of lozenges per direction, taking into account
*         mesh-splitting.
* IELEM   degree of the Lagrangian finite elements: =1 (linear);
*         =2 (parabolic); =3 (cubic).
* ICOL    type of quadrature: =1 (analytical integration);
*         =2 (Gauss-Lobatto); =3 (Gauss-Legendre).
* NLF     number of Legendre orders for the flux (even number).
* NVD     type of void boundary condition if NLF>0 and ICOL=3.
* NAN     number of Legendre orders for the cross sections.
* LL4F    number of flux components.
* LL4W    number of W-directed currents.
* LL4X    number of X-directed currents.
* LL4Y    number of Y-directed currents.
* LL4Z    number of Z-directed currents.
* MAT     mixture index assigned to each lozenge.
* SIGT    total minus self-scattering macroscopic cross sections.
*         SIGT(:,NAN) generally contains the total cross section only.
* SIGTI   inverse macroscopic cross sections ordered by mixture.
*         SIGTI(:,NAN) generally contains the inverse total cross
*         section only.
* SIDE    side of an hexagon.
* ZZ      Z-directed mesh spacings.
* FRZ     volume fractions for the axial SYME boundary condition.
* QFR     element-ordered boundary conditions.
* IPERT   mixture permutation index.
* KN      ADI permutation indices for the volumes and currents.
* MUW     W-directed compressed storage mode indices.
* MUX     X-directed compressed storage mode indices.
* MUY     Y-directed compressed storage mode indices.
* MUZ     Z-directed compressed storage mode indices.
* IPBBW   W-directed perdue storage indices.
* IPBBX   X-directed perdue storage indices.
* IPBBY   Y-directed perdue storage indices.
* IPBBZ   Z-directed perdue storage indices.
* LC      order of the unit matrices.
* R       unit matrix.
* V       unit matrix.
* BBW     W-directed flux-current matrices.
* BBX     X-directed flux-current matrices.
* BBY     Y-directed flux-current matrices.
* BBZ     Z-directed flux-current matrices.
*
*Parameters: output
* TTF     flux-flux matrices.
* AW      W-directed main current-current matrices. Dimensionned to
*         MUW(LL4W)*NLF/2.
* AX      X-directed main current-current matrices. Dimensionned to
*         MUX(LL4X)*NLF/2.
* AY      Y-directed main current-current matrices. Dimensionned to
*         MUY(LL4Y)*NLF/2.
* AZ      Z-directed main current-current matrices. Dimensionned to
*         MUZ(LL4Z)*NLF/2.
* C11W    W-directed main current-current matrices to be factorized.
*         Dimensionned to MUW(LL4W)*NLF/2.
* C11X    X-directed main current-current matrices to be factorized.
*         Dimensionned to MUX(LL4X)*NLF/2.
* C11Y    Y-directed main current-current matrices to be factorized.
*         Dimensionned to MUY(LL4Y)*NLF/2.
* C11Z    Z-directed main current-current matrices to be factorized.
*         Dimensionned to MUZ(LL4Z)*NLF/2.
*
*-----------------------------------------------------------------------
*
*----
*  SUBROUTINE ARGUMENTS
*----
      INTEGER NBMIX,NBLOS,IELEM,ICOL,NLF,NVD,NAN,LL4F,LL4W,
     1 MAT(3,NBLOS),MUW(LL4W),IPBBW(2*IELEM,LL4W),LC,IPERT(NBLOS),
     2 KN(NBLOS,3+6*(IELEM+2)*IELEM**2)
      REAL SIGT(NBMIX,NAN),SIGTI(NBMIX,NAN),SIDE,ZZ(3,NBLOS),FRZ(NBLOS),
     1 QFR(NBLOS,8),R(LC,LC),V(LC,LC-1),BBW(2*IELEM,LL4W),
     2 TTF(LL4F*NLF/2),AW(*),C11W(*)
*----
*  LOCAL VARIABLES
*----
      REAL QQ(5,5)
      DOUBLE PRECISION FFF,TTTT,VOL0,GARS,GARSI,FACT,VAR1
*----
*  W-ORIENTED COUPLINGS
*----
      ZMARS=0.0
      IF(ICOL.EQ.3) THEN
         IF(NVD.EQ.0) THEN
            NZMAR=NLF+1
         ELSE IF(NVD.EQ.1) THEN
            NZMAR=NLF
         ELSE IF(NVD.EQ.2) THEN
            NZMAR=65
         ENDIF
      ELSE
         NZMAR=65
      ENDIF
      DO 25 I0=1,IELEM
      DO 20 J0=1,IELEM
      FFF=0.0D0
      DO 10 K0=2,IELEM
      FFF=FFF+V(K0,I0)*V(K0,J0)/R(K0,K0)
   10 CONTINUE
      IF(ABS(FFF).LE.1.0E-6) FFF=0.0D0
      QQ(I0,J0)=REAL(FFF)
   20 CONTINUE
   25 CONTINUE
      MUMAX=MUW(LL4W)
      DO 120 IL=0,NLF-1
      IF(MOD(IL,2).EQ.1) ZMARS=PNMAR2(NZMAR,IL,IL)
      FACT=REAL(2*IL+1)
*----
*  ASSEMBLY OF THE W-ORIENTED COEFFICIENT MATRICES AT ORDER IL.
*----
      NELEH=(IELEM+1)*IELEM**2
      TTTT=0.5D0*SQRT(3.D00)*SIDE*SIDE
      NUM=0
      DO 70 KEL=1,NBLOS
      IF(IPERT(KEL).EQ.0) GO TO 70
      IBM=MAT(1,IPERT(KEL))
      NUM=NUM+1
      IF(IBM.EQ.0) GO TO 70
      DZ=ZZ(1,IPERT(KEL))
      VOL0=TTTT*DZ*FRZ(KEL)
      GARS=SIGT(IBM,MIN(IL+1,NAN))
      IF(MOD(IL,2).EQ.0) THEN
*        EVEN PARITY EQUATION.
         VAR1=FACT*VOL0*GARS
         DO 32 K3=0,IELEM-1
         DO 31 K2=0,IELEM-1
         DO 30 K1=0,IELEM-1
         IOF=(IL/2)*LL4F
         JND1=IOF+(((NUM-1)*IELEM+K3)*IELEM+K2)*IELEM+K1+1
         JND2=IOF+(((KN(NUM,1)-1)*IELEM+K3)*IELEM+K2)*IELEM+K1+1
         JND3=IOF+(((KN(NUM,2)-1)*IELEM+K3)*IELEM+K2)*IELEM+K1+1
         TTF(JND1)=TTF(JND1)+REAL(VAR1)
         TTF(JND2)=TTF(JND2)+REAL(VAR1)
         TTF(JND3)=TTF(JND3)+REAL(VAR1)
   30    CONTINUE
   31    CONTINUE
   32    CONTINUE
      ELSE
*        PARTIAL INVERSION OF THE ODD PARITY EQUATION. MODIFICATION OF
*        THE EVEN PARITY EQUATION.
         GARSI=SIGTI(IBM,MIN(IL+1,NAN))
         IF(IELEM.GT.1) THEN
            KOFF=((IL-1)/2)*LL4F
            DO 42 K3=0,IELEM-1
            DO 41 K2=0,IELEM-1
            DO 40 K1=0,IELEM-1
            JND1=KOFF+(((NUM-1)*IELEM+K3)*IELEM+K2)*IELEM+K1+1
            JND2=KOFF+(((KN(NUM,1)-1)*IELEM+K3)*IELEM+K2)*IELEM+K1+1
            JND3=KOFF+(((KN(NUM,2)-1)*IELEM+K3)*IELEM+K2)*IELEM+K1+1
            VAR1=(REAL(IL)**2)*VOL0*QQ(K3+1,K3+1)*GARSI/(FACT*DZ*DZ)
            TTF(JND1)=TTF(JND1)+REAL(VAR1)
            TTF(JND2)=TTF(JND2)+REAL(VAR1)
            TTF(JND3)=TTF(JND3)+REAL(VAR1)
            IF(IL.LE.NLF-3) THEN
              JND1=JND1+LL4F
              JND2=JND2+LL4F
              JND3=JND3+LL4F
              VAR1=(REAL(IL+1)**2)*VOL0*QQ(K3+1,K3+1)*GARSI/(FACT*DZ*DZ)
              TTF(JND1)=TTF(JND1)+REAL(VAR1)
              TTF(JND2)=TTF(JND2)+REAL(VAR1)
              TTF(JND3)=TTF(JND3)+REAL(VAR1)
            ENDIF
   40       CONTINUE
   41       CONTINUE
   42       CONTINUE
         ENDIF
*
*        ODD PARITY EQUATION.
         DO 63 K5=0,1 ! TWO LOZENGES PER HEXAGON
         DO 62 K4=0,IELEM-1
         DO 61 K3=0,IELEM-1
         DO 60 K2=1,IELEM+1
         KNW1=KN(NUM,3+K5*NELEH+(K4*IELEM+K3)*(IELEM+1)+K2)
         INW1=ABS(KNW1)
         DO 50 K1=1,IELEM+1
         KNW2=KN(NUM,3+K5*NELEH+(K4*IELEM+K3)*(IELEM+1)+K1)
         INW2=ABS(KNW2)
         IF((KNW2.NE.0).AND.(KNW1.NE.0).AND.(INW1.GE.INW2)) THEN
            KEY=((IL-1)/2)*MUMAX+MUW(INW1)-INW1+INW2
            SG=REAL(SIGN(1,KNW1)*SIGN(1,KNW2))
            VAR1=(4./3.)*SG*FACT*VOL0*GARS*R(K2,K1)
            AW(KEY)=AW(KEY)-REAL(VAR1)
         ENDIF
   50    CONTINUE
         IF(KNW1.NE.0) THEN
            KEY=((IL-1)/2)*MUMAX+MUW(INW1)
            IF((K2.EQ.1).AND.(K5.EQ.0)) THEN
               VAR1=0.5*FACT*QFR(NUM,1)*ZMARS
               AW(KEY)=AW(KEY)-REAL(VAR1)
            ELSE IF((K2.EQ.IELEM+1).AND.(K5.EQ.1)) THEN
               VAR1=0.5*FACT*QFR(NUM,2)*ZMARS
               AW(KEY)=AW(KEY)-REAL(VAR1)
            ENDIF
         ENDIF
   60    CONTINUE
   61    CONTINUE
   62    CONTINUE
   63    CONTINUE
      ENDIF
   70 CONTINUE
*
      IF(MOD(IL,2).EQ.1) THEN
         DO 80 I0=1,MUMAX
         C11W(((IL-1)/2)*MUMAX+I0)=-AW(((IL-1)/2)*MUMAX+I0)
   80    CONTINUE
         MUIM1=0
         DO 110 I=1,LL4W
         MUI=MUW(I)
         DO 100 J=I-(MUI-MUIM1)+1,I
         KEY=((IL-1)/2)*MUMAX+(MUI-I+J)
         DO 95 I0=1,2*IELEM
         II=IPBBW(I0,I)
         IF(II.EQ.0) GO TO 100
         DO 90 J0=1,2*IELEM
         JJ=IPBBW(J0,J)
         IF(II.EQ.JJ) C11W(KEY)=C11W(KEY)+REAL(IL**2)*BBW(I0,I)*
     1   BBW(J0,J)/TTF(((IL-1)/2)*LL4F+II)
   90    CONTINUE
   95    CONTINUE
  100    CONTINUE
         MUIM1=MUI
  110    CONTINUE
      ENDIF
  120 CONTINUE
      RETURN
      END
*
      SUBROUTINE PN3HWX(NBMIX,NBLOS,IELEM,ICOL,NLF,NVD,NAN,LL4F,LL4W,
     1 LL4X,MAT,SIGT,SIDE,ZZ,FRZ,QFR,IPERT,KN,MUX,IPBBX,LC,R,BBX,TTF,
     2 AX,C11X)
*----
*  SUBROUTINE ARGUMENTS
*----
      INTEGER NBMIX,NBLOS,IELEM,ICOL,NLF,NVD,NAN,LL4F,LL4W,LL4X,
     1 MAT(3,NBLOS),MUX(LL4X),IPBBX(2*IELEM,LL4X),LC,IPERT(NBLOS),
     2 KN(NBLOS,3+6*(IELEM+2)*IELEM**2)
      REAL SIGT(NBMIX,NAN),SIDE,ZZ(3,NBLOS),FRZ(NBLOS),QFR(NBLOS,8),
     1 R(LC,LC),BBX(2*IELEM,LL4X),TTF(LL4F*NLF/2),AX(*),C11X(*)
*----
*  LOCAL VARIABLES
*----
      DOUBLE PRECISION TTTT,VOL0,GARS,FACT,VAR1
*----
*  X-ORIENTED COUPLINGS
*----
      ZMARS=0.0
      IF(ICOL.EQ.3) THEN
         IF(NVD.EQ.0) THEN
            NZMAR=NLF+1
         ELSE IF(NVD.EQ.1) THEN
            NZMAR=NLF
         ELSE IF(NVD.EQ.2) THEN
            NZMAR=65
         ENDIF
      ELSE
         NZMAR=65
      ENDIF
      MUMAX=MUX(LL4X)
      DO 200 IL=1,NLF-1,2
      ZMARS=PNMAR2(NZMAR,IL,IL)
      FACT=REAL(2*IL+1)
*----
*  ASSEMBLY OF THE X-ORIENTED COEFFICIENT MATRICES AT ODD ORDER IL.
*----
      NELEH=(IELEM+1)*IELEM**2
      TTTT=0.5D0*SQRT(3.D00)*SIDE*SIDE
      NUM=0
      DO 150 KEL=1,NBLOS
      IF(IPERT(KEL).EQ.0) GO TO 150
      IBM=MAT(1,IPERT(KEL))
      NUM=NUM+1
      IF(IBM.EQ.0) GO TO 150
      VOL0=TTTT*ZZ(1,IPERT(KEL))*FRZ(KEL)
      GARS=SIGT(IBM,MIN(IL+1,NAN))
*
      DO 143 K5=0,1 ! TWO LOZENGES PER HEXAGON
      DO 142 K4=0,IELEM-1
      DO 141 K3=0,IELEM-1
      DO 140 K2=1,IELEM+1
      KNX1=KN(NUM,3+(K5+2)*NELEH+(K4*IELEM+K3)*(IELEM+1)+K2)
      INX1=ABS(KNX1)-LL4W
      DO 130 K1=1,IELEM+1
      KNX2=KN(NUM,3+(K5+2)*NELEH+(K4*IELEM+K3)*(IELEM+1)+K1)
      INX2=ABS(KNX2)-LL4W
      IF((KNX2.NE.0).AND.(KNX1.NE.0).AND.(INX1.GE.INX2)) THEN
         KEY=((IL-1)/2)*MUMAX+MUX(INX1)-INX1+INX2
         SG=REAL(SIGN(1,KNX1)*SIGN(1,KNX2))
         VAR1=(4./3.)*SG*FACT*VOL0*GARS*R(K2,K1)
         AX(KEY)=AX(KEY)-REAL(VAR1)
      ENDIF
  130 CONTINUE
      IF(KNX1.NE.0) THEN
         KEY=((IL-1)/2)*MUMAX+MUX(INX1)
         IF((K2.EQ.1).AND.(K5.EQ.0)) THEN
            VAR1=0.5*FACT*QFR(NUM,3)*ZMARS
            AX(KEY)=AX(KEY)-REAL(VAR1)
         ELSE IF((K2.EQ.IELEM+1).AND.(K5.EQ.1)) THEN
            VAR1=0.5*FACT*QFR(NUM,4)*ZMARS
            AX(KEY)=AX(KEY)-REAL(VAR1)
         ENDIF
      ENDIF
  140 CONTINUE
  141 CONTINUE
  142 CONTINUE
  143 CONTINUE
  150 CONTINUE
*
      DO 160 I0=1,MUMAX
      C11X(((IL-1)/2)*MUMAX+I0)=-AX(((IL-1)/2)*MUMAX+I0)
  160 CONTINUE
      MUIM1=0
      DO 190 I=1,LL4X
      MUI=MUX(I)
      DO 180 J=I-(MUI-MUIM1)+1,I
      KEY=((IL-1)/2)*MUMAX+(MUI-I+J)
      DO 175 I0=1,2*IELEM
      II=IPBBX(I0,I)
      IF(II.EQ.0) GO TO 180
      DO 170 J0=1,2*IELEM
      JJ=IPBBX(J0,J)
      IF(II.EQ.JJ) THEN
         VAR1=REAL(IL**2)*BBX(I0,I)*BBX(J0,J)/TTF(((IL-1)/2)*LL4F+II)
         C11X(KEY)=C11X(KEY)+REAL(VAR1)
      ENDIF
  170 CONTINUE
  175 CONTINUE
  180 CONTINUE
      MUIM1=MUI
  190 CONTINUE
  200 CONTINUE
      RETURN
      END
*
      SUBROUTINE PN3HWY(NBMIX,NBLOS,IELEM,ICOL,NLF,NVD,NAN,LL4F,LL4W,
     1 LL4X,LL4Y,MAT,SIGT,SIDE,ZZ,FRZ,QFR,IPERT,KN,MUY,IPBBY,LC,R,BBY,
     2 TTF,AY,C11Y)
*----
*  SUBROUTINE ARGUMENTS
*----
      INTEGER NBMIX,NBLOS,IELEM,ICOL,NLF,NVD,NAN,LL4F,LL4W,LL4X,LL4Y,
     1 MAT(3,NBLOS),MUY(LL4Y),IPBBY(2*IELEM,LL4Y),LC,IPERT(NBLOS),
     2 KN(NBLOS,3+6*(IELEM+2)*IELEM**2)
      REAL SIGT(NBMIX,NAN),SIDE,ZZ(3,NBLOS),FRZ(NBLOS),QFR(NBLOS,8),
     1 R(LC,LC),BBY(2*IELEM,LL4Y),TTF(LL4F*NLF/2),AY(*),C11Y(*)
*----
*  LOCAL VARIABLES
*----
      DOUBLE PRECISION TTTT,VOL0,GARS,FACT,VAR1
*----
*  Y-ORIENTED COUPLINGS
*----
      ZMARS=0.0
      IF(ICOL.EQ.3) THEN
         IF(NVD.EQ.0) THEN
            NZMAR=NLF+1
         ELSE IF(NVD.EQ.1) THEN
            NZMAR=NLF
         ELSE IF(NVD.EQ.2) THEN
            NZMAR=65
         ENDIF
      ELSE
         NZMAR=65
      ENDIF
      MUMAX=MUY(LL4Y)
      DO 280 IL=1,NLF-1,2
      ZMARS=PNMAR2(NZMAR,IL,IL)
      FACT=REAL(2*IL+1)
*----
*  ASSEMBLY OF THE Y-ORIENTED COEFFICIENT MATRICES AT ODD ORDER IL.
*----
      NELEH=(IELEM+1)*IELEM**2
      TTTT=0.5D0*SQRT(3.D00)*SIDE*SIDE
      NUM=0
      DO 230 KEL=1,NBLOS
      IF(IPERT(KEL).EQ.0) GO TO 230
      IBM=MAT(1,IPERT(KEL))
      NUM=NUM+1
      IF(IBM.EQ.0) GO TO 230
      VOL0=TTTT*ZZ(1,IPERT(KEL))*FRZ(KEL)
      GARS=SIGT(IBM,MIN(IL+1,NAN))
*
      DO 223 K5=0,1 ! TWO LOZENGES PER HEXAGON
      DO 222 K4=0,IELEM-1
      DO 221 K3=0,IELEM-1
      DO 220 K2=1,IELEM+1
      KNY1=KN(NUM,3+(K5+4)*NELEH+(K4*IELEM+K3)*(IELEM+1)+K2)
      INY1=ABS(KNY1)-LL4W-LL4X
      DO 210 K1=1,IELEM+1
      KNY2=KN(NUM,3+(K5+4)*NELEH+(K4*IELEM+K3)*(IELEM+1)+K1)
      INY2=ABS(KNY2)-LL4W-LL4X
      IF((KNY2.NE.0).AND.(KNY1.NE.0).AND.(INY1.GE.INY2)) THEN
         KEY=((IL-1)/2)*MUMAX+MUY(INY1)-INY1+INY2
         SG=REAL(SIGN(1,KNY1)*SIGN(1,KNY2))
         VAR1=(4./3.)*SG*FACT*VOL0*GARS*R(K2,K1)
         AY(KEY)=AY(KEY)-REAL(VAR1)
      ENDIF
  210 CONTINUE
      IF(KNY1.NE.0) THEN
         KEY=((IL-1)/2)*MUMAX+MUY(INY1)
         IF((K2.EQ.1).AND.(K5.EQ.0)) THEN
            VAR1=0.5*FACT*QFR(NUM,5)*ZMARS
            AY(KEY)=AY(KEY)-REAL(VAR1)
         ELSE IF((K2.EQ.IELEM+1).AND.(K5.EQ.1)) THEN
            VAR1=0.5*FACT*QFR(NUM,6)*ZMARS
            AY(KEY)=AY(KEY)-REAL(VAR1)
         ENDIF
      ENDIF
  220 CONTINUE
  221 CONTINUE
  222 CONTINUE
  223 CONTINUE
  230 CONTINUE
*
      DO 240 I0=1,MUMAX
      C11Y(((IL-1)/2)*MUMAX+I0)=-AY(((IL-1)/2)*MUMAX+I0)
  240 CONTINUE
      MUIM1=0
      DO 270 I=1,LL4Y
      MUI=MUY(I)
      DO 260 J=I-(MUI-MUIM1)+1,I
      KEY=((IL-1)/2)*MUMAX+(MUI-I+J)
      DO 255 I0=1,2*IELEM
      II=IPBBY(I0,I)
      IF(II.EQ.0) GO TO 260
      DO 250 J0=1,2*IELEM
      JJ=IPBBY(J0,J)
      IF(II.EQ.JJ) C11Y(KEY)=C11Y(KEY)+REAL(IL**2)*BBY(I0,I)*
     1 BBY(J0,J)/TTF(((IL-1)/2)*LL4F+II)
  250 CONTINUE
  255 CONTINUE
  260 CONTINUE
      MUIM1=MUI
  270 CONTINUE
  280 CONTINUE
      RETURN
      END
*
      SUBROUTINE PN3HWZ(NBMIX,NBLOS,IELEM,ICOL,NLF,NVD,NAN,LL4F,LL4W,
     1 LL4X,LL4Y,LL4Z,MAT,SIGT,SIDE,ZZ,FRZ,QFR,IPERT,KN,MUZ,IPBBZ,LC,
     2 R,BBZ,TTF,AZ,C11Z)
*----
*  SUBROUTINE ARGUMENTS
*----
      INTEGER NBMIX,NBLOS,IELEM,ICOL,NLF,NVD,NAN,LL4F,LL4W,LL4X,
     1 LL4Y,LL4Z,MAT(3,NBLOS),MUZ(LL4Z),IPBBZ(2*IELEM,LL4Z),LC,
     2 IPERT(NBLOS),KN(NBLOS,3+6*(IELEM+2)*IELEM**2)
      REAL SIGT(NBMIX,NAN),SIDE,ZZ(3,NBLOS),FRZ(NBLOS),QFR(NBLOS,8),
     1 R(LC,LC),BBZ(2*IELEM,LL4Z),TTF(LL4F*NLF/2),AZ(*),C11Z(*)
*----
*  LOCAL VARIABLES
*----
      DOUBLE PRECISION TTTT,VOL0,GARS,FACT,VAR1
*----
*  Z-ORIENTED COUPLINGS
*----
      ZMARS=0.0
      IF(ICOL.EQ.3) THEN
         IF(NVD.EQ.0) THEN
            NZMAR=NLF+1
         ELSE IF(NVD.EQ.1) THEN
            NZMAR=NLF
         ELSE IF(NVD.EQ.2) THEN
            NZMAR=65
         ENDIF
      ELSE
         NZMAR=65
      ENDIF
      MUMAX=MUZ(LL4Z)
      DO 360 IL=1,NLF-1,2
      ZMARS=PNMAR2(NZMAR,IL,IL)
      FACT=REAL(2*IL+1)
*----
*  ASSEMBLY OF THE Z-ORIENTED COEFFICIENT MATRICES AT ODD ORDER IL.
*----
      NELEH=(IELEM+1)*IELEM**2
      TTTT=0.5D0*SQRT(3.D00)*SIDE*SIDE
      NUM=0
      DO 310 KEL=1,NBLOS
      IF(IPERT(KEL).EQ.0) GO TO 310
      IBM=MAT(1,IPERT(KEL))
      IF(IBM.EQ.0) GO TO 310
      NUM=NUM+1
      VOL0=TTTT*ZZ(1,IPERT(KEL))*FRZ(KEL)
      GARS=SIGT(IBM,MIN(IL+1,NAN))
*
      DO 302 K5=0,2 ! THREE LOZENGES PER HEXAGON
      DO 301 K2=0,IELEM-1
      DO 300 K1=0,IELEM-1
      KNZ1=KN(NUM,3+6*NELEH+2*K5*IELEM**2+K2*IELEM+K1+1)
      INZ1=ABS(KNZ1)-LL4W-LL4X-LL4Y
      KNZ2=KN(NUM,3+6*NELEH+(2*K5+1)*IELEM**2+K2*IELEM+K1+1)
      INZ2=ABS(KNZ2)-LL4W-LL4X-LL4Y
      IF(KNZ1.NE.0) THEN
        KEY=((IL-1)/2)*MUMAX+MUZ(INZ1)
        VAR1=FACT*VOL0*GARS*R(1,1)+0.5*FACT*QFR(NUM,7)*ZMARS
        AZ(KEY)=AZ(KEY)-REAL(VAR1)
      ENDIF
      IF(KNZ2.NE.0) THEN
        KEY=((IL-1)/2)*MUMAX+MUZ(INZ2)
        VAR1=FACT*VOL0*GARS*R(IELEM+1,IELEM+1)+0.5*FACT*QFR(NUM,8)*ZMARS
        AZ(KEY)=AZ(KEY)-REAL(VAR1)
      ENDIF
      IF((ICOL.NE.2).AND.(KNZ1.NE.0).AND.(KNZ2.NE.0)) THEN
        IF(INZ2.GT.INZ1) KEY=((IL-1)/2)*MUMAX+MUZ(INZ2)-INZ2+INZ1
        IF(INZ2.LE.INZ1) KEY=((IL-1)/2)*MUMAX+MUZ(INZ1)-INZ1+INZ2
        SG=REAL(SIGN(1,KNZ1)*SIGN(1,KNZ2))
        IF(INZ1.EQ.INZ2) SG=2.0*SG
        VAR1=SG*FACT*VOL0*GARS*R(IELEM+1,1)
        AZ(KEY)=AZ(KEY)-REAL(VAR1)
      ENDIF
  300 CONTINUE
  301 CONTINUE
  302 CONTINUE
  310 CONTINUE
*
      DO 320 I0=1,MUMAX
      C11Z(((IL-1)/2)*MUMAX+I0)=-AZ(((IL-1)/2)*MUMAX+I0)
  320 CONTINUE
      MUIM1=0
      DO 350 I=1,LL4Z
      MUI=MUZ(I)
      DO 340 J=I-(MUI-MUIM1)+1,I
      KEY=((IL-1)/2)*MUMAX+(MUI-I+J)
      DO 335 I0=1,2*IELEM
      II=IPBBZ(I0,I)
      IF(II.EQ.0) GO TO 340
      DO 330 J0=1,2*IELEM
      JJ=IPBBZ(J0,J)
      IF(II.EQ.JJ) C11Z(KEY)=C11Z(KEY)+REAL(IL**2)*BBZ(I0,I)*
     1 BBZ(J0,J)/TTF(((IL-1)/2)*LL4F+II)
  330 CONTINUE
  335 CONTINUE
  340 CONTINUE
      MUIM1=MUI
  350 CONTINUE
  360 CONTINUE
      RETURN
      END