1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
|
*DECK PN3DXX
SUBROUTINE PN3DXX(NBMIX,IELEM,ICOL,NEL,NLF,NVD,NAN,LL4F,LL4X,
1 SIGT,SIGTI,MAT,VOL,XX,YY,ZZ,KN,QFR,MUX,IPBBX,LC,R,V,BBX,TTF,
2 AX,C11X)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Assembly of system matrices for a Thomas-Raviart (dual) finite element
* method in 3-D simplified PN approximation. Note: system matrices
* should be initialized by the calling program.
*
*Copyright:
* Copyright (C) 2005 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* NBMIX number of mixtures.
* IELEM degree of the Lagrangian finite elements: =1 (linear);
* =2 (parabolic); =3 (cubic).
* ICOL type of quadrature: =1 (analytical integration);
* =2 (Gauss-Lobatto); =3 (Gauss-Legendre).
* NEL total number of finite elements.
* NLF number of Legendre orders for the flux (even number).
* NVD type of void boundary condition if NLF>0 and ICOL=3.
* NAN number of Legendre orders for the cross sections.
* LL4F number of flux components.
* LL4X number of X-directed currents.
* LL4Y number of Y-directed currents.
* LL4Z number of Z-directed currents.
* SIGT total minus self-scattering macroscopic cross sections.
* SIGT(:,NAN) generally contains the total cross section only.
* SIGTI inverse macroscopic cross sections ordered by mixture.
* SIGTI(:,NAN) generally contains the inverse total cross
* section only.
* MAT mixture index assigned to each element.
* VOL volume of each element.
* XX X-directed mesh spacings.
* YY Y-directed mesh spacings.
* ZZ Z-directed mesh spacings.
* KN element-ordered unknown list.
* QFR element-ordered boundary conditions.
* MUX X-directed compressed storage mode indices.
* MUY Y-directed compressed storage mode indices.
* MUZ Z-directed compressed storage mode indices.
* IPBBX X-directed perdue storage indices.
* IPBBY Y-directed perdue storage indices.
* IPBBZ Z-directed perdue storage indices.
* LC order of the unit matrices.
* R unit matrix.
* V unit matrix.
* BBX X-directed flux-current matrices.
* BBY Y-directed flux-current matrices.
* BBZ Z-directed flux-current matrices.
*
*Parameters: output
* TTF flux-flux matrices.
* AX X-directed main current-current matrices. Dimensionned to
* MUX(LL4X)*NLF/2.
* AY Y-directed main current-current matrices. Dimensionned to
* MUY(LL4Y)*NLF/2.
* AZ Z-directed main current-current matrices. Dimensionned to
* MUZ(LL4Z)*NLF/2.
* C11X X-directed main current-current matrices to be factorized.
* Dimensionned to MUX(LL4X)*NLF/2.
* C11Y Y-directed main current-current matrices to be factorized.
* Dimensionned to MUY(LL4Y)*NLF/2.
* C11Z Z-directed main current-current matrices to be factorized.
* Dimensionned to MUZ(LL4Z)*NLF/2.
*
*Reference(s):
* J.J. Lautard, D. Schneider, A.M. Baudron, "Mixed Dual Methods for
* Neutronic Reactor Core Calculations in the CRONOS System," Proc.
* Int. Conf. on Mathematics and Computation, Reactor Physics and
* Environmental Analysis in Nuclear Applications, Madrid, Spain,
* September 27-30, 1999.
*
*-----------------------------------------------------------------------
*
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER NBMIX,IELEM,ICOL,NEL,NLF,NVD,NAN,LL4F,LL4X,MAT(NEL),
1 KN(NEL*(1+6*IELEM**2)),MUX(LL4X),IPBBX(2*IELEM,LL4X),LC
REAL SIGT(NBMIX,NAN),SIGTI(NBMIX,NAN),VOL(NEL),XX(NEL),YY(NEL),
1 ZZ(NEL),QFR(6*NEL),R(LC,LC),V(LC,LC-1),BBX(2*IELEM,LL4X),
2 TTF(LL4F*NLF/2),AX(*),C11X(*)
*----
* LOCAL VARIABLES
*----
REAL QQ(5,5)
*----
* X-ORIENTED COUPLINGS
*----
ZMARS=0.0
IF(ICOL.EQ.3) THEN
IF(NVD.EQ.0) THEN
NZMAR=NLF+1
ELSE IF(NVD.EQ.1) THEN
NZMAR=NLF
ELSE IF(NVD.EQ.2) THEN
NZMAR=65
ENDIF
ELSE
NZMAR=65
ENDIF
DO 25 I0=1,IELEM
DO 20 J0=1,IELEM
FFF=0.0
DO 10 K0=2,IELEM
FFF=FFF+V(K0,I0)*V(K0,J0)/R(K0,K0)
10 CONTINUE
IF(ABS(FFF).LE.1.0E-6) FFF=0.0
QQ(I0,J0)=FFF
20 CONTINUE
25 CONTINUE
MUMAX=MUX(LL4X)
DO 170 IL=0,NLF-1
IF(MOD(IL,2).EQ.1) ZMARS=PNMAR2(NZMAR,IL,IL)
FACT=REAL(2*IL+1)
*----
* ASSEMBLY OF THE X-ORIENTED COEFFICIENT MATRICES AT ORDER IL.
*----
NUM1=0
NUM2=0
DO 120 IE=1,NEL
IBM=MAT(IE)
IF(IBM.EQ.0) GO TO 120
VOL0=VOL(IE)
IF(VOL0.EQ.0.0) GO TO 110
DX=XX(IE)
DY=YY(IE)
DZ=ZZ(IE)
GARS=SIGT(IBM,MIN(IL+1,NAN))
IF(MOD(IL,2).EQ.0) THEN
* EVEN PARITY EQUATION.
DO 32 K3=0,IELEM-1
DO 31 K2=0,IELEM-1
DO 30 K1=0,IELEM-1
KEY=(IL/2)*LL4F+KN(NUM1+1)+(K3*IELEM+K2)*IELEM+K1
TTF(KEY)=TTF(KEY)+FACT*VOL0*GARS
30 CONTINUE
31 CONTINUE
32 CONTINUE
ELSE
GARSI=SIGTI(IBM,MIN(IL+1,NAN))
DO 105 K3=0,IELEM-1
DO 100 K2=0,IELEM-1
* PARTIAL INVERSION OF THE ODD PARITY EQUATION. MODIFICATION OF
* THE EVEN PARITY EQUATION.
DO 40 K1=0,IELEM-1
JND1=KN(NUM1+1)+(K3*IELEM+K2)*IELEM+K1
KEY=((IL-1)/2)*LL4F+JND1
TTF(KEY)=TTF(KEY)+(REAL(IL)**2)*VOL0*QQ(K1+1,K1+1)*GARSI/(FACT*
1 DX*DX)
IF(IL.LE.NLF-3) THEN
KEY=((IL+2)/2)*LL4F+JND1
TTF(KEY)=TTF(KEY)+(REAL(IL+1)**2)*VOL0*QQ(K1+1,K1+1)*GARSI/
1 (FACT*DX*DX)
ENDIF
KEY=((IL-1)/2)*LL4F+JND1
TTF(KEY)=TTF(KEY)+(REAL(IL)**2)*VOL0*QQ(K2+1,K2+1)*GARSI/
1 (FACT*DY*DY)
IF(IL.LE.NLF-3) THEN
KEY=((IL+2)/2)*LL4F+JND1
TTF(KEY)=TTF(KEY)+(REAL(IL+1)**2)*VOL0*QQ(K2+1,K2+1)*GARSI/
1 (FACT*DY*DY)
ENDIF
KEY=((IL-1)/2)*LL4F+JND1
TTF(KEY)=TTF(KEY)+(REAL(IL)**2)*VOL0*QQ(K3+1,K3+1)*GARSI/
1 (FACT*DZ*DZ)
IF(IL.LE.NLF-3) THEN
KEY=((IL+2)/2)*LL4F+JND1
TTF(KEY)=TTF(KEY)+(REAL(IL+1)**2)*VOL0*QQ(K3+1,K3+1)*GARSI/
1 (FACT*DZ*DZ)
ENDIF
40 CONTINUE
*
* ODD PARITY EQUATION.
DO 55 IC=1,2
IF(IC.EQ.1) IIC=1
IF(IC.EQ.2) IIC=IELEM+1
KN1=KN(NUM1+2+(IC-1)*IELEM**2+K3*IELEM+K2)
IND1=ABS(KN1)-LL4F
S1=REAL(SIGN(1,KN1))
DO 50 JC=1,2
IF(JC.EQ.1) JJC=1
IF(JC.EQ.2) JJC=IELEM+1
KN2=KN(NUM1+2+(JC-1)*IELEM**2+K3*IELEM+K2)
IND2=ABS(KN2)-LL4F
IF((KN1.NE.0).AND.(KN2.NE.0).AND.(IND1.GE.IND2)) THEN
S2=REAL(SIGN(1,KN2))
KEY=((IL-1)/2)*MUMAX+MUX(IND1)-IND1+IND2
AX(KEY)=AX(KEY)-S1*S2*FACT*R(IIC,JJC)*VOL0*GARS
ENDIF
50 CONTINUE
55 CONTINUE
*
KN1=KN(NUM1+2+K3*IELEM+K2)
KN2=KN(NUM1+2+IELEM**2+K3*IELEM+K2)
IND1=ABS(KN1)-LL4F
IND2=ABS(KN2)-LL4F
IF((QFR(NUM2+1).NE.0.0).AND.(KN1.NE.0)) THEN
KEY=((IL-1)/2)*MUMAX+MUX(IND1)
AX(KEY)=AX(KEY)-0.5*FACT*QFR(NUM2+1)*ZMARS
ENDIF
IF((QFR(NUM2+2).NE.0.0).AND.(KN2.NE.0)) THEN
KEY=((IL-1)/2)*MUMAX+MUX(IND2)
AX(KEY)=AX(KEY)-0.5*FACT*QFR(NUM2+2)*ZMARS
ENDIF
100 CONTINUE
105 CONTINUE
ENDIF
110 NUM1=NUM1+1+6*IELEM**2
NUM2=NUM2+6
120 CONTINUE
*
IF(MOD(IL,2).EQ.1) THEN
DO 130 I0=1,MUMAX
C11X(((IL-1)/2)*MUMAX+I0)=-AX(((IL-1)/2)*MUMAX+I0)
130 CONTINUE
MUIM1=0
DO 160 I=1,LL4X
MUI=MUX(I)
DO 150 J=I-(MUI-MUIM1)+1,I
KEY=((IL-1)/2)*MUMAX+(MUI-I+J)
DO 145 I0=1,2*IELEM
II=IPBBX(I0,I)
IF(II.EQ.0) GO TO 150
DO 140 J0=1,2*IELEM
JJ=IPBBX(J0,J)
IF(II.EQ.JJ) C11X(KEY)=C11X(KEY)+REAL(IL**2)*BBX(I0,I)*
1 BBX(J0,J)/TTF(((IL-1)/2)*LL4F+II)
140 CONTINUE
145 CONTINUE
150 CONTINUE
MUIM1=MUI
160 CONTINUE
ENDIF
170 CONTINUE
RETURN
END
*
SUBROUTINE PN3DXY(NBMIX,IELEM,ICOL,NEL,NLF,NVD,NAN,LL4F,LL4X,LL4Y,
1 SIGT,MAT,VOL,YY,KN,QFR,MUY,IPBBY,LC,R,BBY,TTF,AY,C11Y)
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER NBMIX,IELEM,ICOL,NEL,NLF,NVD,NAN,LL4F,LL4X,LL4Y,MAT(NEL),
1 KN(NEL*(1+6*IELEM**2)),MUY(LL4Y),IPBBY(2*IELEM,LL4Y),LC
REAL SIGT(NBMIX,NAN),VOL(NEL),YY(NEL),QFR(6*NEL),R(LC,LC),
1 BBY(2*IELEM,LL4Y),TTF(LL4F*NLF/2),AY(*),C11Y(*)
*----
* Y-ORIENTED COUPLINGS
*----
ZMARS=0.0
IF(ICOL.EQ.3) THEN
IF(NVD.EQ.0) THEN
NZMAR=NLF+1
ELSE IF(NVD.EQ.1) THEN
NZMAR=NLF
ELSE IF(NVD.EQ.2) THEN
NZMAR=65
ENDIF
ELSE
NZMAR=65
ENDIF
MUMAX=MUY(LL4Y)
DO 320 IL=1,NLF-1,2
ZMARS=PNMAR2(NZMAR,IL,IL)
FACT=REAL(2*IL+1)
*----
* ASSEMBLY OF THE Y-ORIENTED COEFFICIENT MATRICES AT ODD ORDER IL.
*----
NUM1=0
NUM2=0
DO 270 IE=1,NEL
IBM=MAT(IE)
IF(IBM.EQ.0) GO TO 270
VOL0=VOL(IE)
IF(VOL0.EQ.0.0) GO TO 260
DY=YY(IE)
GARS=SIGT(IBM,MIN(IL+1,NAN))
*
DO 255 K3=0,IELEM-1
DO 250 K1=0,IELEM-1
DO 205 IC=3,4
IF(IC.EQ.3) IIC=1
IF(IC.EQ.4) IIC=IELEM+1
KN1=KN(NUM1+2+(IC-1)*IELEM**2+K3*IELEM+K1)
IND1=ABS(KN1)-LL4F-LL4X
S1=REAL(SIGN(1,KN1))
DO 200 JC=3,4
IF(JC.EQ.3) JJC=1
IF(JC.EQ.4) JJC=IELEM+1
KN2=KN(NUM1+2+(JC-1)*IELEM**2+K3*IELEM+K1)
IND2=ABS(KN2)-LL4F-LL4X
IF((KN1.NE.0).AND.(KN2.NE.0).AND.(IND1.GE.IND2)) THEN
S2=REAL(SIGN(1,KN2))
KEY=((IL-1)/2)*MUMAX+MUY(IND1)-IND1+IND2
AY(KEY)=AY(KEY)-S1*S2*FACT*R(IIC,JJC)*VOL0*GARS
ENDIF
200 CONTINUE
205 CONTINUE
*
KN1=KN(NUM1+2+2*IELEM**2+K3*IELEM+K1)
KN2=KN(NUM1+2+3*IELEM**2+K3*IELEM+K1)
IND1=ABS(KN1)-LL4F-LL4X
IND2=ABS(KN2)-LL4F-LL4X
IF((QFR(NUM2+3).NE.0.0).AND.(KN1.NE.0)) THEN
KEY=((IL-1)/2)*MUMAX+MUY(IND1)
AY(KEY)=AY(KEY)-0.5*FACT*QFR(NUM2+3)*ZMARS
ENDIF
IF((QFR(NUM2+4).NE.0.0).AND.(KN2.NE.0)) THEN
KEY=((IL-1)/2)*MUMAX+MUY(IND2)
AY(KEY)=AY(KEY)-0.5*FACT*QFR(NUM2+4)*ZMARS
ENDIF
250 CONTINUE
255 CONTINUE
260 NUM1=NUM1+1+6*IELEM**2
NUM2=NUM2+6
270 CONTINUE
*
DO 280 I0=1,MUMAX
C11Y(((IL-1)/2)*MUMAX+I0)=-AY(((IL-1)/2)*MUMAX+I0)
280 CONTINUE
MUIM1=0
DO 310 I=1,LL4Y
MUI=MUY(I)
DO 300 J=I-(MUI-MUIM1)+1,I
KEY=((IL-1)/2)*MUMAX+(MUI-I+J)
DO 295 I0=1,2*IELEM
II=IPBBY(I0,I)
IF(II.EQ.0) GO TO 300
DO 290 J0=1,2*IELEM
JJ=IPBBY(J0,J)
IF(II.EQ.JJ) C11Y(KEY)=C11Y(KEY)+REAL(IL**2)*BBY(I0,I)*BBY(J0,J)/
1 TTF(((IL-1)/2)*LL4F+II)
290 CONTINUE
295 CONTINUE
300 CONTINUE
MUIM1=MUI
310 CONTINUE
320 CONTINUE
RETURN
END
*
SUBROUTINE PN3DXZ(NBMIX,IELEM,ICOL,NEL,NLF,NVD,NAN,LL4F,LL4X,LL4Y,
1 LL4Z,SIGT,MAT,VOL,ZZ,KN,QFR,MUZ,IPBBZ,LC,R,BBZ,TTF,AZ,C11Z)
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER NBMIX,IELEM,ICOL,NEL,NLF,NVD,NAN,LL4F,LL4X,LL4Y,LL4Z,
1 MAT(NEL),KN(NEL*(1+6*IELEM**2)),MUZ(LL4Z),IPBBZ(2*IELEM,LL4Z),LC
REAL SIGT(NBMIX,NAN),VOL(NEL),ZZ(NEL),QFR(6*NEL),R(LC,LC),
1 BBZ(2*IELEM,LL4Z),TTF(LL4F*NLF/2),AZ(*),C11Z(*)
*----
* Z-ORIENTED COUPLINGS
*----
ZMARS=0.0
IF(ICOL.EQ.3) THEN
IF(NVD.EQ.0) THEN
NZMAR=NLF+1
ELSE IF(NVD.EQ.1) THEN
NZMAR=NLF
ELSE IF(NVD.EQ.2) THEN
NZMAR=65
ENDIF
ELSE
NZMAR=65
ENDIF
MUMAX=MUZ(LL4Z)
DO 470 IL=1,NLF-1,2
ZMARS=PNMAR2(NZMAR,IL,IL)
FACT=REAL(2*IL+1)
*----
* ASSEMBLY OF THE Z-ORIENTED COEFFICIENT MATRICES AT ORDER IL.
*----
NUM1=0
NUM2=0
DO 420 IE=1,NEL
IBM=MAT(IE)
IF(IBM.EQ.0) GO TO 420
VOL0=VOL(IE)
IF(VOL0.EQ.0.0) GO TO 410
DZ=ZZ(IE)
GARS=SIGT(IBM,MIN(IL+1,NAN))
*
DO 405 K2=0,IELEM-1
DO 400 K1=0,IELEM-1
DO 355 IC=5,6
IF(IC.EQ.5) IIC=1
IF(IC.EQ.6) IIC=IELEM+1
KN1=KN(NUM1+2+(IC-1)*IELEM**2+K2*IELEM+K1)
IND1=ABS(KN1)-LL4F-LL4X-LL4Y
S1=REAL(SIGN(1,KN1))
DO 350 JC=5,6
IF(JC.EQ.5) JJC=1
IF(JC.EQ.6) JJC=IELEM+1
KN2=KN(NUM1+2+(JC-1)*IELEM**2+K2*IELEM+K1)
IND2=ABS(KN2)-LL4F-LL4X-LL4Y
IF((KN1.NE.0).AND.(KN2.NE.0).AND.(IND1.GE.IND2)) THEN
S2=REAL(SIGN(1,KN2))
KEY=((IL-1)/2)*MUMAX+MUZ(IND1)-IND1+IND2
AZ(KEY)=AZ(KEY)-S1*S2*FACT*R(IIC,JJC)*VOL0*GARS
ENDIF
350 CONTINUE
355 CONTINUE
*
KN1=KN(NUM1+2+4*IELEM**2+K2*IELEM+K1)
KN2=KN(NUM1+2+5*IELEM**2+K2*IELEM+K1)
IND1=ABS(KN1)-LL4F-LL4X-LL4Y
IND2=ABS(KN2)-LL4F-LL4X-LL4Y
IF((QFR(NUM2+5).NE.0.0).AND.(KN1.NE.0)) THEN
KEY=((IL-1)/2)*MUMAX+MUZ(IND1)
AZ(KEY)=AZ(KEY)-0.5*FACT*QFR(NUM2+5)*ZMARS
ENDIF
IF((QFR(NUM2+6).NE.0.0).AND.(KN2.NE.0)) THEN
KEY=((IL-1)/2)*MUMAX+MUZ(IND2)
AZ(KEY)=AZ(KEY)-0.5*FACT*QFR(NUM2+6)*ZMARS
ENDIF
400 CONTINUE
405 CONTINUE
410 NUM1=NUM1+1+6*IELEM**2
NUM2=NUM2+6
420 CONTINUE
*
DO 430 I0=1,MUMAX
C11Z(((IL-1)/2)*MUMAX+I0)=-AZ(((IL-1)/2)*MUMAX+I0)
430 CONTINUE
MUIM1=0
DO 460 I=1,LL4Z
MUI=MUZ(I)
DO 450 J=I-(MUI-MUIM1)+1,I
KEY=((IL-1)/2)*MUMAX+(MUI-I+J)
DO 445 I0=1,2*IELEM
II=IPBBZ(I0,I)
IF(II.EQ.0) GO TO 450
DO 440 J0=1,2*IELEM
JJ=IPBBZ(J0,J)
IF(II.EQ.JJ) C11Z(KEY)=C11Z(KEY)+REAL(IL**2)*BBZ(I0,I)*BBZ(J0,J)/
1 TTF(((IL-1)/2)*LL4F+II)
440 CONTINUE
445 CONTINUE
450 CONTINUE
MUIM1=MUI
460 CONTINUE
470 CONTINUE
RETURN
END
|