1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
|
*DECK OUTPRO
SUBROUTINE OUTPRO (IPMAC1,IPMAC2,NBMIX,NL,NBFIS,NGRP,NEL,NUN,
1 NALBP,NZS,NGCOND,MAT,VOL,IDL,EVECT,ADECT,IHOM,IGCOND,IMPX)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Perform direct-adjoint homogenization into NZS regions and
* condensation into NGCOND macrogroups based on averaged fluxes
* contained in EVECT and adjoint fluxes contained in ADECT. Create
* an output extended macrolib containing homogenized volumes,
* integrated fluxes and cross sections.
*
*Copyright:
* Copyright (C) 2018 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IPMAC1 L_MACROLIB pointer to the input macrolib.
* IPMAC2 L_MACROLIB pointer to the output extended macrolib.
* NBMIX number of material mixtures.
* NL scattering anisotropy.
* NBFIS number of fissionable isotopes.
* NGRP total number of energy groups.
* NEL number of finite elements.
* NUN number of unknowns per energy group.
* NALBP number of physical albedos.
* NZS number of homogenized regions so that NZS=max(IHOM(i)).
* NGCOND number of macrogroups after energy condensation.
* MAT index-number of the mixture type assigned to each volume.
* VOL volumes.
* IDL position of the average flux component associated with
* each volume.
* EVECT unknowns.
* ADECT adjoint flux unknowns.
* IHOM homogenized index assigned to each element.
* IGCOND limit of condensed groups.
* IMPX print parameter (equal to zero for no print).
*
*-----------------------------------------------------------------------
*
USE GANLIB
*----
* SUBROUTINE ARGUMENTS
*----
TYPE(C_PTR) IPMAC1,IPMAC2
PARAMETER(NREAC=11)
INTEGER NBMIX,NL,NBFIS,NGRP,NEL,NUN,NALBP,NZS,NGCOND,MAT(NEL),
1 IDL(NEL),IHOM(NEL),IGCOND(NGCOND),IMPX
REAL VOL(NEL),EVECT(NUN,NGRP),ADECT(NUN,NGRP)
*----
* LOCAL VARIABLES
*----
TYPE(C_PTR) JPMAC1,KPMAC1,JPMAC2,KPMAC2
PARAMETER(NSTATE=40)
CHARACTER HREAC(NREAC)*12,TEXT12*12,SUFF*2,TEXT6*6
INTEGER IDATA(NSTATE)
LOGICAL LNUSIG,LESTOP,LFIXE,LREAC(NREAC)
*----
* ALLOCATABLE ARRAYS
*----
INTEGER, DIMENSION(:), ALLOCATABLE :: IJJ,NJJ,IPOS
REAL, DIMENSION(:), ALLOCATABLE :: VOLI,WORK,SCAT,RATE,GAR,RATEF,
1 DEN,DEN2
REAL, DIMENSION(:,:), ALLOCATABLE :: FLINT,AFLINT,CHI,ZUFIS,
1 ALBPGR,ALBP,OUTR,ESTOP,DEN3
REAL, DIMENSION(:,:,:), ALLOCATABLE :: OUTSC
DOUBLE PRECISION, DIMENSION(:,:), ALLOCATABLE :: ACCUM
*----
* DATA STATEMENT
*----
DATA HREAC/'NTOT0','SIGW00','NUSIGF','NFTOT','H-FACTOR',
1 'OVERV','DIFF','DIFFX','DIFFY','DIFFZ','C-FACTOR'/
*----
* SCRATCH STORAGE ALLOCATION
* OUTR(IBM,NREAC+1): volume
* OUTR(IBM,NREAC+2): integrated direct flux
* OUTR(IBM,NREAC+3): adjoint weighting flux
* OUTR(IBM,NREAC+4): fission spectrum
* OUTR(IBM,NREAC+5): fixed sources
*----
ALLOCATE(VOLI(NZS),WORK(NZS),RATE(NZS),FLINT(NZS,NGRP),
1 AFLINT(NZS,NGRP),CHI(NBMIX,NBFIS),ZUFIS(NBMIX,NBFIS),
2 OUTR(NZS+1,NREAC+5),OUTSC(NZS,NL+2,NGCOND),GAR(NGRP),
3 ALBPGR(NALBP,NGRP),ALBP(NALBP,NGCOND),ESTOP(NZS,NGRP+1))
ALLOCATE(ACCUM(NZS,NBFIS))
*
ALBP(:NALBP,:NGCOND)=0.0
ESTOP(:NZS,:NGRP+1)=0.0
LNUSIG=.FALSE.
LESTOP=.FALSE.
LFIXE=.FALSE.
LREAC(:NREAC)=.FALSE.
*----
* RECOVER PHYSICAL ALBEDOS.
*----
IF(NALBP.GT.0) CALL LCMGET(IPMAC1,'ALBEDO',ALBPGR)
*----
* DIRECT FLUX CALCULATION.
*----
VOLI(:NZS)=0.0
FLINT(:NZS,:NGRP)=0.0
DO 20 K=1,NEL
IBM=IHOM(K)
IPFL=IDL(K)
IF((IBM.NE.0).AND.(MAT(K).NE.0).AND.(IPFL.NE.0)) THEN
VOLI(IBM)=VOLI(IBM)+VOL(K)
DO 10 IGR=1,NGRP
FLINT(IBM,IGR)=FLINT(IBM,IGR)+EVECT(IPFL,IGR)*VOL(K)
10 CONTINUE
ENDIF
20 CONTINUE
CALL LCMPUT(IPMAC2,'VOLUME',NZS,2,VOLI)
*----
* ADJOINT FLUX CALCULATION.
*----
AFLINT(:NZS,:NGRP)=0.0
DO 40 K=1,NEL
IBM=IHOM(K)
IPFL=IDL(K)
IF((IBM.NE.0).AND.(MAT(K).NE.0).AND.(IPFL.NE.0)) THEN
DO 30 IGR=1,NGRP
AFLINT(IBM,IGR)=AFLINT(IBM,IGR)+ADECT(IPFL,IGR)*
1 EVECT(IPFL,IGR)*VOL(K)
30 CONTINUE
ENDIF
40 CONTINUE
DO 60 IGR=1,NGRP
DO 50 IBM=1,NZS
AFLINT(IBM,IGR)=AFLINT(IBM,IGR)/FLINT(IBM,IGR)
50 CONTINUE
60 CONTINUE
*----
* FISSION RATE CALCULATION.
*----
IF(IMPX.GT.0) WRITE(6,'(/35H OUTPRO: REACTION RATE CALCULATION.)')
JPMAC1=LCMGID(IPMAC1,'GROUP')
JPMAC2=LCMLID(IPMAC2,'GROUP',NGCOND)
IF(NBFIS.GT.0) THEN
ACCUM(:NZS,:NBFIS)=0.0D0
DO 100 IGR=1,NGRP
KPMAC1=LCMGIL(JPMAC1,IGR)
CALL LCMGET(KPMAC1,'NUSIGF',ZUFIS)
DO 90 IFISS=1,NBFIS
DO 80 K=1,NEL
IBM=IHOM(K)
L=MAT(K)
IPFL=IDL(K)
IF((IBM.NE.0).AND.(L.NE.0).AND.(IPFL.NE.0)) THEN
ACCUM(IBM,IFISS)=ACCUM(IBM,IFISS)+ADECT(IPFL,IGR)*
1 EVECT(IPFL,IGR)*VOL(K)*ZUFIS(L,IFISS)
ENDIF
80 CONTINUE
90 CONTINUE
100 CONTINUE
ENDIF
*----
* LOOP OVER ENERGY GROUP LIST.
*----
IGRFIN=0
DO 500 IGRC=1,NGCOND
IGRDEB=IGRFIN+1
IGRFIN=IGCOND(IGRC)
OUTR(:NZS+1,:NREAC+5)=0.0
OUTSC(:NZS,:NL+2,:NGCOND)=0.0
ALLOCATE(RATEF(NZS),DEN(NZS))
RATEF(:NZS)=0.0
DEN(:NZS)=0.0
DO 310 IGR=IGRDEB,IGRFIN
KPMAC1=LCMGIL(JPMAC1,IGR)
DO 110 IBM=1,NZS
OUTR(IBM,NREAC+2)=OUTR(IBM,NREAC+2)+FLINT(IBM,IGR)
OUTR(IBM,NREAC+3)=OUTR(IBM,NREAC+3)+AFLINT(IBM,IGR)
110 CONTINUE
*----
* SET VOLUMES.
*----
DO 120 IBM=1,NZS
OUTR(IBM,NREAC+1)=VOLI(IBM)
120 CONTINUE
*----
* REACTION RATE CALCULATION.
*----
DO 150 IREAC=1,NREAC
CALL LCMLEN(KPMAC1,HREAC(IREAC),LENGT,ITYLCM)
LREAC(IREAC)=LREAC(IREAC).OR.(LENGT.NE.0)
IF((HREAC(IREAC).EQ.'H-FACTOR').AND.(LENGT.EQ.0)) THEN
WRITE(6,'(/46H OUTPRO: *** WARNING *** NO H-FACTOR FOUND ON ,
1 25HLCM. USE NU*SIGF INSTEAD.)')
LNUSIG=.TRUE.
GO TO 150
ELSE IF(HREAC(IREAC).EQ.'NUSIGF') THEN
GO TO 150
ELSE IF(HREAC(IREAC).EQ.'SIGW00') THEN
GO TO 150
ELSE
TEXT12=HREAC(IREAC)
ENDIF
IF(LENGT.GT.0) THEN
IF(LENGT.GT.NBMIX) CALL XABORT('OUTPRO: INVALID LENGTH FOR '//
1 HREAC(IREAC)//' CROSS SECTIONS.')
CALL LCMGET(KPMAC1,TEXT12,WORK)
RATE(:NZS)=0.0
DO 130 K=1,NEL
IBM=IHOM(K)
L=MAT(K)
IPFL=IDL(K)
IF((IBM.NE.0).AND.(L.NE.0).AND.(IPFL.NE.0)) THEN
RATE(IBM)=RATE(IBM)+ADECT(IPFL,IGR)*EVECT(IPFL,IGR)*VOL(K)*
1 WORK(L)
ENDIF
130 CONTINUE
DO 140 IBM=1,NZS
OUTR(IBM,IREAC)=OUTR(IBM,IREAC)+RATE(IBM)
140 CONTINUE
ENDIF
150 CONTINUE
*----
* FIXED SOURCES
*----
CALL LCMLEN(KPMAC1,'FIXE',LENGT,ITYLCM)
IF(LENGT.GT.0) THEN
LFIXE=.TRUE.
IF(LENGT.GT.NBMIX) CALL XABORT('OUTPRO: INVALID LENGTH FOR '//
1 'FIXE SOURCE.')
CALL LCMGET(KPMAC1,'FIXE',WORK)
RATE(:NZS)=0.0
DO 160 K=1,NEL
IBM=IHOM(K)
L=MAT(K)
IPFL=IDL(K)
IF((IBM.NE.0).AND.(L.NE.0).AND.(IPFL.NE.0)) THEN
RATE(IBM)=RATE(IBM)+ADECT(IPFL,IGR)*VOL(K)*WORK(L)
ENDIF
160 CONTINUE
DO 170 IBM=1,NZS
OUTR(IBM,NREAC+5)=OUTR(IBM,NREAC+5)+RATE(IBM)
170 CONTINUE
ENDIF
*----
* SCATTERING MATRIX INFORMATION IGR <-- JGR.
*----
ALLOCATE(IJJ(NBMIX),NJJ(NBMIX),IPOS(NBMIX))
ALLOCATE(SCAT(NBMIX*NGRP))
DO 220 IL=1,NL
WRITE(SUFF,'(I2.2)') IL-1
CALL LCMLEN(KPMAC1,'NJJS'//SUFF,LENGT,ITYLCM)
IF(LENGT.GT.0) THEN
IF(LENGT.GT.NBMIX) CALL XABORT('OUTPRO: INVALID LENGTH FOR '//
1 'SCATTERING CROSS SECTIONS.')
CALL LCMLEN(KPMAC1,'SCAT'//SUFF,LENGT,ITYLCM)
IF(LENGT.GT.NBMIX*NGRP) CALL XABORT('OUTPRO: SCAT OVERFLOW.')
CALL LCMGET(KPMAC1,'NJJS'//SUFF,NJJ)
CALL LCMGET(KPMAC1,'IJJS'//SUFF,IJJ)
CALL LCMGET(KPMAC1,'IPOS'//SUFF,IPOS)
CALL LCMGET(KPMAC1,'SCAT'//SUFF,SCAT)
IPOSDE=0
DO 210 K=1,NEL
IBM=IHOM(K)
L=MAT(K)
IPFL=IDL(K)
IF((IBM.NE.0).AND.(L.NE.0).AND.(IPFL.NE.0)) THEN
GAR(:NGRP)=0.0
IPOSDE=IPOS(L)-1
DO 180 JGR=IJJ(L),IJJ(L)-NJJ(L)+1,-1
IPOSDE=IPOSDE+1
GAR(JGR)=SCAT(IPOSDE)
180 CONTINUE
JGRFIN=0
DO 200 JGRC=1,NGCOND
JGRDEB=JGRFIN+1
JGRFIN=IGCOND(JGRC)
DO 190 JGR=JGRDEB,JGRFIN
OUTSC(IBM,IL,JGRC)=OUTSC(IBM,IL,JGRC)+ADECT(IPFL,JGR)*
1 EVECT(IPFL,JGR)*VOL(K)*GAR(JGR)
190 CONTINUE
200 CONTINUE
ENDIF
210 CONTINUE
IF(IL.EQ.1) OUTR(:NZS,2)=OUTSC(:NZS,IL,IGRC)
ENDIF
220 CONTINUE
DEALLOCATE(SCAT)
DEALLOCATE(IJJ,NJJ,IPOS)
*----
* FISSION SPECTRUM AND NUSIGF HOMOGENIZATION.
*----
IF(NBFIS.GT.0) THEN
CALL LCMLEN(KPMAC1,'NUSIGF',LENGT,ITYLCM)
IF(LENGT.NE.NBMIX*NBFIS) CALL XABORT('OUTPRO: INVALID LENGTH '
1 //'FOR FISSION SPECTRUM.')
CALL LCMGET(KPMAC1,'NUSIGF',ZUFIS)
CALL LCMLEN(KPMAC1,'CHI',LENGT,ITYLCM)
IF(LENGT.EQ.0) THEN
IF(IGR.EQ.IGRDEB) OUTR(:NZS,NREAC+4)=1.0
ELSE
CALL LCMGET(KPMAC1,'CHI',CHI)
DO 240 K=1,NEL
IBM=IHOM(K)
L=MAT(K)
IF((IBM.NE.0).AND.(L.NE.0)) THEN
DO 230 IFISS=1,NBFIS
RATE(IBM)=RATE(IBM)+CHI(L,IFISS)*REAL(ACCUM(IBM,IFISS))
DEN(IBM)=DEN(IBM)+REAL(ACCUM(IBM,IFISS))
230 CONTINUE
ENDIF
240 CONTINUE
ENDIF
DO 260 IFISS=1,NBFIS
DO 250 K=1,NEL
IBM=IHOM(K)
L=MAT(K)
IPFL=IDL(K)
IF((IBM.NE.0).AND.(L.NE.0).AND.(IPFL.NE.0)) THEN
OUTR(IBM,3)=OUTR(IBM,3)+ADECT(IPFL,IGR)*EVECT(IPFL,IGR)*
1 VOL(K)*ZUFIS(L,IFISS)
ENDIF
250 CONTINUE
260 CONTINUE
ENDIF
*----
* CONDENSE PHYSICAL ALBEDOS.
*----
IF(NALBP.GT.0) THEN
DO 280 IAL=1,NALBP
DO 270 IBM=1,NZS
ALBP(IAL,IGRC)=ALBP(IAL,IGRC)+ALBPGR(IAL,IGR)*AFLINT(IBM,IGR)*
1 FLINT(IBM,IGR)
270 CONTINUE
280 CONTINUE
ENDIF
*----
* RECOVER AND HOMOGENIZE STOPPING POWERS
*----
CALL LCMLEN(KPMAC1,'ESTOPW',LENGT,ITYLCM)
IF(LENGT.EQ.2*NBMIX) THEN
ALLOCATE(DEN3(NBMIX,2))
LESTOP=.TRUE.
CALL LCMGET(KPMAC1,'ESTOPW',DEN3)
DO 290 K=1,NEL
IBM=IHOM(K)
L=MAT(K)
IPFL=IDL(K)
IF((IBM.NE.0).AND.(L.NE.0).AND.(IPFL.NE.0)) THEN
IF(IGR.EQ.1) THEN
FACTOR=ADECT(IPFL,IGR)*EVECT(IPFL,IGR)/(AFLINT(IBM,IGR)*
1 FLINT(IBM,IGR))
ELSE
FACTOR=(ADECT(IPFL,IGR-1)*EVECT(IPFL,IGR-1)+
1 ADECT(IPFL,IGR)*EVECT(IPFL,IGR))/(AFLINT(IBM,IGR-1)*
2 FLINT(IBM,IGR-1)+AFLINT(IBM,IGR)*FLINT(IBM,IGR))
ENDIF
ESTOP(IBM,IGR)=ESTOP(IBM,IGR)+FACTOR*VOL(K)*DEN3(L,1)
ENDIF
290 CONTINUE
IF(IGR.EQ.NGRP) THEN
DO 300 K=1,NEL
IBM=IHOM(K)
L=MAT(K)
IPFL=IDL(K)
IF((IBM.NE.0).AND.(L.NE.0).AND.(IPFL.NE.0)) THEN
FACTOR=ADECT(IPFL,IGR)*EVECT(IPFL,IGR)/(AFLINT(IBM,IGR)*
1 FLINT(IBM,IGR))
ESTOP(IBM,IGR+1)=ESTOP(IBM,IGR+1)+FACTOR*VOL(K)*DEN3(L,2)
ENDIF
300 CONTINUE
ENDIF
DEALLOCATE(DEN3)
ENDIF
310 CONTINUE
*
DO 340 K=1,NEL
IBM=IHOM(K)
L=MAT(K)
IPFL=IDL(K)
IF((IBM.NE.0).AND.(L.NE.0).AND.(IPFL.NE.0)) THEN
JGRFIN=0
DO 330 JGRC=1,NGCOND
JGRDEB=JGRFIN+1
JGRFIN=IGCOND(JGRC)
DO 320 JGR=JGRDEB,JGRFIN
OUTSC(IBM,NL+1,JGRC)=OUTSC(IBM,NL+1,JGRC)+EVECT(IPFL,JGR)*VOL(K)
OUTSC(IBM,NL+2,JGRC)=OUTSC(IBM,NL+2,JGRC)+ADECT(IPFL,JGR)*VOL(K)
320 CONTINUE
330 CONTINUE
ENDIF
340 CONTINUE
IF(NBFIS.GT.0) THEN
DO 350 IBM=1,NZS
IF(DEN(IBM).NE.0.0) OUTR(IBM,NREAC+3)=RATEF(IBM)/DEN(IBM)
350 CONTINUE
ENDIF
DEALLOCATE(DEN,RATEF)
*----
* PRINT THE REACTION RATES:
*----
IF(IMPX.GT.0) THEN
DO 360 I=1,NREAC+3
OUTR(NZS+1,I)=0.0
360 CONTINUE
WRITE(6,520) IGRC,'VOLUME ','FLUX-INTG ',
1 (HREAC(I),I=1,6),'CHI '
DO 380 IBM=1,NZS
DO 370 I=1,NREAC+3
OUTR(NZS+1,I)=OUTR(NZS+1,I)+OUTR(IBM,I)
370 CONTINUE
WRITE(6,530) IBM,OUTR(IBM,NREAC+1),OUTR(IBM,NREAC+2),
1 (OUTR(IBM,I),I=1,6),OUTR(IBM,NREAC+4)
380 CONTINUE
WRITE(6,540) OUTR(NZS+1,NREAC+1),OUTR(NZS+1,NREAC+2),
1 (OUTR(NZS+1,I),I=1,6)
ENDIF
*----
* COMPUTE HOMOGENIZED-CONDENSED MACROLIB
*----
KPMAC2=LCMDIL(JPMAC2,IGRC)
CALL LCMPUT(KPMAC2,'FLUX-INTG',NZS,2,OUTR(1,NREAC+2))
CALL LCMPUT(KPMAC2,'NWAT0',NZS,2,OUTR(1,NREAC+3))
DO 400 IREAC=1,NREAC
IF(LREAC(IREAC)) THEN
DO 390 IBM=1,NZS
RATE(IBM)=OUTR(IBM,IREAC)
IF(RATE(IBM).NE.0.0) RATE(IBM)=RATE(IBM)/(OUTR(IBM,NREAC+2)*
1 OUTR(IBM,NREAC+3))
390 CONTINUE
CALL LCMPUT(KPMAC2,HREAC(IREAC),NZS,2,RATE)
IF(LNUSIG.AND.(IREAC.EQ.3)) THEN
CALL LCMPUT(KPMAC2,'H-FACTOR',NZS,2,RATE)
ENDIF
ENDIF
400 CONTINUE
IF(LREAC(3)) CALL LCMPUT(KPMAC2,'CHI',NZS,2,OUTR(1,NREAC+4))
IF(LFIXE) THEN
DO 410 IBM=1,NZS
RATE(IBM)=OUTR(IBM,NREAC+5)
IF(RATE(IBM).NE.0.0) RATE(IBM)=RATE(IBM)/OUTR(IBM,NREAC+3)
410 CONTINUE
CALL LCMPUT(KPMAC2,'FIXE',NZS,2,RATE)
ENDIF
*
ALLOCATE(IJJ(NZS),NJJ(NZS),IPOS(NZS))
ALLOCATE(SCAT(NZS*NGCOND))
DO 460 IL=1,NL
WRITE(SUFF,'(I2.2)') IL-1
DO 430 IBM=1,NZS
IGMIN=IGRC
IGMAX=IGRC
DO 420 JGRC=NGCOND,1,-1
IF(OUTSC(IBM,IL,JGRC).NE.0.0) THEN
IGMIN=MIN(IGMIN,JGRC)
IGMAX=MAX(IGMAX,JGRC)
OUTSC(IBM,IL,JGRC)=OUTSC(IBM,IL,JGRC)/(OUTSC(IBM,NL+1,JGRC)*
1 OUTSC(IBM,NL+2,JGRC))
ENDIF
420 CONTINUE
IJJ(IBM)=IGMAX
NJJ(IBM)=IGMAX-IGMIN+1
430 CONTINUE
IPOSDE=0
DO 450 IBM=1,NZS
IPOS(IBM)=IPOSDE+1
DO 440 JGRC=IJJ(IBM),IJJ(IBM)-NJJ(IBM)+1,-1
IPOSDE=IPOSDE+1
SCAT(IPOSDE)=OUTSC(IBM,IL,JGRC)
440 CONTINUE
450 CONTINUE
CALL LCMPUT(KPMAC2,'SCAT'//SUFF,IPOSDE,2,SCAT)
CALL LCMPUT(KPMAC2,'IPOS'//SUFF,NZS,1,IPOS)
CALL LCMPUT(KPMAC2,'NJJS'//SUFF,NZS,1,NJJ)
CALL LCMPUT(KPMAC2,'IJJS'//SUFF,NZS,1,IJJ)
CALL LCMPUT(KPMAC2,'SIGW'//SUFF,NZS,2,OUTSC(1,IL,IGRC))
460 CONTINUE
DEALLOCATE(SCAT)
DEALLOCATE(IJJ,NJJ,IPOS)
*
IF(NALBP.GT.0) THEN
DFI=0.0
DO 470 IBM=1,NZS
DFI=DFI+OUTR(IBM,NREAC+2)*OUTR(IBM,NREAC+3)
470 CONTINUE
DO 480 IAL=1,NALBP
ALBP(IAL,IGRC)=ALBP(IAL,IGRC)/DFI
480 CONTINUE
ENDIF
*----
* SAVE STOPPING POWERS
*----
IF(LESTOP) THEN
ALLOCATE(DEN3(NZS,2))
DO 490 IBM=1,NZS
IF(IGRC.EQ.1) THEN
DEN3(IBM,1)=ESTOP(IBM,1)
ELSE
DEN3(IBM,1)=ESTOP(IBM,IGCOND(IGRC-1))
ENDIF
DEN3(IBM,2)=ESTOP(IBM,IGCOND(IGRC)+1)
490 CONTINUE
CALL LCMPUT(KPMAC2,'ESTOPW',NZS*2,2,DEN3)
DEALLOCATE(DEN3)
ENDIF
500 CONTINUE
*----
* END OF LOOP OVER MACROGROUPS
*----
*----
* RECOVER AND CONDENSE ENERGY MESH
*----
CALL LCMLEN(IPMAC1,'ENERGY',LENGT,ITYLCM)
IF(LENGT.EQ.NGRP+1) THEN
ALLOCATE(DEN(NGRP+1),DEN2(NGCOND+1))
CALL LCMGET(IPMAC1,'ENERGY',DEN)
DEN2(1)=DEN(1)
DO 510 IGRC=1,NGCOND
DEN2(IGRC+1)=DEN(IGCOND(IGRC)+1)
510 CONTINUE
CALL LCMPUT(IPMAC2,'ENERGY',NGCOND+1,2,DEN2)
DEALLOCATE(DEN2,DEN)
ENDIF
*----
* SAVE ALBEDO AND STATE-VECTOR
*----
IF(NALBP.GT.0) THEN
CALL LCMPUT(IPMAC2,'ALBEDO',NALBP*NGCOND,2,ALBP)
ENDIF
CALL LCMLEN(IPMAC1,'PARTICLE',LENGT,ITYLCM)
IF(LENGT.GT.0) THEN
CALL LCMGTC(IPMAC1,'PARTICLE',12,TEXT6)
CALL LCMPTC(IPMAC2,'PARTICLE',12,TEXT6)
ENDIF
IDATA(:NSTATE)=0
IDATA(1)=NGCOND
IDATA(2)=NZS
IDATA(3)=NL
IDATA(4)=1
IDATA(8)=NALBP
IF(LREAC(7)) THEN
IDATA(9)=1
ELSE IF(LREAC(8)) THEN
IDATA(9)=2
ENDIF
IDATA(15)=0
CALL LCMPUT(IPMAC2,'STATE-VECTOR',NSTATE,1,IDATA)
*----
* SCRATCH STORAGE DEALLOCATION
*----
DEALLOCATE(ACCUM)
DEALLOCATE(ESTOP,ALBP,ALBPGR,GAR,OUTSC,OUTR,ZUFIS,CHI,AFLINT,
1 FLINT,RATE,WORK,VOLI)
RETURN
*
520 FORMAT(/' G R O U P : ',I3/1X,'IHOM',9A14)
530 FORMAT(1X,I4,1P,9E14.5)
540 FORMAT(/5H SUM,1P,8E14.5)
END
|