1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
|
*DECK OUTDRV
SUBROUTINE OUTDRV (IPGEOM,IPMAC1,IPFLUX,IPMAC2,MAXNEL,NBMIX,NL,
1 NBFIS,NGRP,NEL,NUN,NALBP,HTRACK,IELEM,ICOL,MAT,VOL,IDL,TITR,IBFP)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Driver for the post-treatment of reactor calculation results.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A Hebert
*
*Parameters: input
* IPGEOM L_GEOM pointer to the geometry.
* IPMAC1 L_MACROLIB pointer to the nuclear properties.
* IPFLUX L_FLUX pointer to the solution.
* IPMAC2 L_MACROLIB pointer to the edition information.
* MAXNEL maximum number of finite elements.
* NBMIX number of material mixtures.
* NL scattering anisotropy.
* NBFIS number of fissionable isotopes.
* NGRP total number of energy groups.
* NEL total number of finite elements.
* NUN total number of unknowns per group.
* NALBP number of physical albedos.
* HTRACK type of tracking (equal to 'BIVAC' or 'TRIVAC').
* IELEM degree of the Lagrangian finite elements:
* ICOL type of quadrature used to integrate the mass matrix
* MAT index-number of the mixture type assigned to each volume.
* VOL volumes.
* IDL position of the average flux component associated with
* each volume.
* TITR title.
* IBFP Boltzmann Fokker-Planck calculations.
*
*-----------------------------------------------------------------------
*
USE GANLIB
*----
* SUBROUTINE ARGUMENTS
*----
TYPE(C_PTR) IPGEOM,IPMAC1,IPMAC2,IPFLUX
CHARACTER TITR*72,HTRACK*12
INTEGER MAXNEL,NBMIX,NL,NBFIS,NGRP,NEL,NUN,NALBP,IELEM,ICOL,
1 MAT(NEL),IDL(NEL),IBFP
REAL VOL(NEL)
*----
* LOCAL VARIABLES
*----
TYPE(C_PTR) JPMAC1,KPMAC1
CHARACTER TEXT4*4
REAL NORM
DOUBLE PRECISION DFLOTT,ZNORM
INTEGER, DIMENSION(:), ALLOCATABLE :: IHOM,IGCOND,MATCOD
REAL, DIMENSION(:), ALLOCATABLE :: SGD,FLUXC
REAL, DIMENSION(:,:), ALLOCATABLE :: EVECT,ADECT,ZUFIS,ESTOPW
*----
* SCRATCH STORAGE ALLOCATION
*----
ALLOCATE(IHOM(NEL),IGCOND(NGRP),EVECT(NUN,NGRP),SGD(NBMIX),
1 FLUXC(NEL),MATCOD(NEL))
*
TKR=0.0
IMPX=1
IADJ=0
NGCOND=NGRP
DO IGR=1,NGRP
IGCOND(IGR)=IGR
ENDDO
LMOD=0
CALL KDRCPU(TK1)
*----
* RECOVER THE K-EFFECTIVE AND THE DIRECT FLUX.
*----
CALL LCMLEN(IPFLUX,'K-EFFECTIVE',ILEN,ITYLCM)
IF(ILEN.GT.0) THEN
CALL LCMGET(IPFLUX,'K-EFFECTIVE',FKEFF)
CALL LCMPUT(IPMAC2,'K-EFFECTIVE',1,2,FKEFF)
ENDIF
CALL LCMLEN(IPFLUX,'NORM-FS',ILEN,ITYLCM)
IF(ILEN.GT.0) THEN
CALL LCMGET(IPFLUX,'NORM-FS',NORM)
CALL LCMPUT(IPMAC2,'NORM-FS',1,2,NORM)
CALL LCMGET(IPFLUX,'MATCOD',MATCOD)
CALL LCMPUT(IPMAC2,'MATCOD',NEL,1,MATCOD)
ENDIF
CALL LCMLEN(IPFLUX,'FLUXC',ILEN,ITYLCM)
IF(ILEN.GT.0) THEN
CALL LCMGET(IPFLUX,'FLUXC',FLUXC)
CALL LCMPUT(IPMAC2,'FLUXC',NEL,2,FLUXC)
CALL LCMGET(IPFLUX,'ECUTOFF',ECUTOFF)
CALL LCMPUT(IPMAC2,'ECUTOFF',1,2,ECUTOFF)
ENDIF
*
20 CALL REDGET(INDIC,NITMA,FLOTT,TEXT4,DFLOTT)
IF(INDIC.NE.3) CALL XABORT('OUTDRV: CHARACTER DATA EXPECTED.')
*
IF(TEXT4.EQ.'EDIT') THEN
CALL REDGET(INDIC,IMPX,FLOTT,TEXT4,DFLOTT)
IF(INDIC.NE.1) CALL XABORT('OUTDRV: INTEGER DATA EXPECTED.')
ELSE IF(TEXT4.EQ.'MODE') THEN
CALL REDGET(INDIC,LMOD,FLOTT,TEXT4,DFLOTT)
IF(INDIC.NE.1) CALL XABORT('OUTDRV: INTEGER DATA EXPECTED.')
ELSE IF(TEXT4.EQ.'DIRE') THEN
IADJ=0
ELSE IF(TEXT4.EQ.'PROD') THEN
IADJ=1
ELSE
CALL OUTFLX(IPFLUX,0,NGRP,NUN,LMOD,IMPX,EVECT)
IF(IBFP.GT.0) THEN
JPMAC1=LCMGID(IPMAC1,'GROUP')
KPMAC1=LCMGIL(JPMAC1,NGRP)
CALL LCMLEN(KPMAC1,'ESTOPW',LENGT,ITYLCM)
IF(LENGT.NE.2*NBMIX) CALL XABORT('OUTDRV: ESTOPW REQUIRED.')
ALLOCATE(ESTOPW(NBMIX,2))
CALL LCMGET(KPMAC1,'ESTOPW',ESTOPW)
CALL LCMPUT(IPMAC2,'ESTOPW',NBMIX,2,ESTOPW(:,2))
DEALLOCATE(ESTOPW)
ENDIF
GO TO 40
ENDIF
GO TO 20
*
30 CALL REDGET(INDIC,NITMA,FLOTT,TEXT4,DFLOTT)
IF(INDIC.NE.3) CALL XABORT('OUTDRV: CHARACTER DATA EXPECTED.')
*
40 IF(TEXT4.EQ.'POWR') THEN
* NORMALIZATION TO A GIVEN FISSION POWER.
CALL REDGET (INDIC,NITMA,POWER,TEXT4,DFLOTT)
IF(INDIC.NE.2) CALL XABORT('OUTDRV: REAL DATA EXPECTED.')
* NORMALIZATION FACTOR FOR THE DIRECT FLUX.
ZNORM=0.0D0
JPMAC1=LCMGID(IPMAC1,'GROUP')
DO 60 IGR=1,NGRP
KPMAC1=LCMGIL(JPMAC1,IGR)
CALL LCMLEN(KPMAC1,'H-FACTOR',LENGT,ITYLCM)
IF(LENGT.GT.0) THEN
CALL LCMGET(KPMAC1,'H-FACTOR',SGD)
ELSE
WRITE(6,'(/43H OUTDRV: *** WARNING *** NO H-FACTOR FOUND ,
1 28HON LCM. USE NU*SIGF INSTEAD.)')
ALLOCATE(ZUFIS(NBMIX,NBFIS))
SGD(:NBMIX)=0.0
CALL LCMGET(KPMAC1,'NUSIGF',ZUFIS)
DO IBM=1,NBMIX
DO IFISS=1,NBFIS
SGD(IBM)=SGD(IBM)+ZUFIS(IBM,IFISS)
ENDDO
ENDDO
DEALLOCATE(ZUFIS)
ENDIF
DO 50 K=1,NEL
L=MAT(K)
IF((L.EQ.0).OR.(IDL(K).EQ.0)) GO TO 50
ZNORM=ZNORM+EVECT(IDL(K),IGR)*VOL(K)*SGD(L)
50 CONTINUE
60 CONTINUE
ZNORM=POWER/ZNORM
WRITE(6,300) ' DIRECT',ZNORM
DO 80 IGR=1,NGRP
DO 70 I=1,NUN
EVECT(I,IGR)=EVECT(I,IGR)*REAL(ZNORM)
70 CONTINUE
80 CONTINUE
ELSE IF(TEXT4.EQ.'FISS') THEN
* NORMALIZATION TO A GIVEN FISSION SECONDARY NEUTRON PRODUCTION.
CALL REDGET (INDIC,NITMA,POWER,TEXT4,DFLOTT)
IF(INDIC.NE.2) CALL XABORT('OUTDRV: REAL DATA EXPECTED.')
* NORMALIZATION FACTOR FOR THE DIRECT FLUX.
ZNORM=0.0D0
JPMAC1=LCMGID(IPMAC1,'GROUP')
DO 100 IGR=1,NGRP
KPMAC1=LCMGIL(JPMAC1,IGR)
CALL LCMLEN(KPMAC1,'NUSIGF',LENGT,ITYLCM)
IF(LENGT.EQ.0) THEN
CALL LCMLIB(KPMAC1)
CALL XABORT('OUTDRV: NUSIGF RECORD MISSING IN MACROLIB.')
ENDIF
ALLOCATE(ZUFIS(NBMIX,NBFIS))
SGD(:NBMIX)=0.0
CALL LCMGET(KPMAC1,'NUSIGF',ZUFIS)
DO IBM=1,NBMIX
DO IFISS=1,NBFIS
SGD(IBM)=SGD(IBM)+ZUFIS(IBM,IFISS)
ENDDO
ENDDO
DEALLOCATE(ZUFIS)
DO 90 K=1,NEL
L=MAT(K)
IF((L.EQ.0).OR.(IDL(K).EQ.0)) GO TO 90
ZNORM=ZNORM+EVECT(IDL(K),IGR)*VOL(K)*SGD(L)
90 CONTINUE
100 CONTINUE
ZNORM=POWER/ZNORM
WRITE(6,300) ' DIRECT',ZNORM
DO 120 IGR=1,NGRP
DO 110 I=1,NUN
EVECT(I,IGR)=EVECT(I,IGR)*REAL(ZNORM)
110 CONTINUE
120 CONTINUE
ELSE IF(TEXT4.EQ.'SOUR') THEN
* NORMALIZATION TO A GIVEN SOURCE INTENSITY.
CALL REDGET (INDIC,NITMA,SNUMB,TEXT4,DFLOTT)
IF(INDIC.NE.2) CALL XABORT('OUTDRV: REAL DATA EXPECTED.')
* NORMALIZATION FACTOR FOR THE DIRECT FLUX.
ZNORM=0.0D0
JPMAC1=LCMGID(IPMAC1,'GROUP')
DO 140 IGR=1,NGRP
KPMAC1=LCMGIL(JPMAC1,IGR)
CALL LCMLEN(KPMAC1,'FIXE',LENGT,ITYLCM)
IF(LENGT.EQ.0) THEN
CALL LCMLIB(KPMAC1)
CALL XABORT('OUTDRV: SOURCE RECORD MISSING IN MACROLIB.')
ENDIF
CALL LCMGET(KPMAC1,'FIXE',SGD)
DO 130 K=1,NEL
L=MAT(K)
IF(L.GT.0) ZNORM=ZNORM+VOL(K)*SGD(L)
130 CONTINUE
140 CONTINUE
ZNORM=SNUMB/ZNORM
WRITE(6,305) ' DIRECT',ZNORM
DO 160 IGR=1,NGRP
DO 150 I=1,NUN
EVECT(I,IGR)=EVECT(I,IGR)*REAL(ZNORM)
150 CONTINUE
160 CONTINUE
ELSE IF(TEXT4.EQ.'COND') THEN
NGCOND=0
CALL REDGET (INDIC,NITMA,FLOTT,TEXT4,DFLOTT)
IF(INDIC.EQ.3) THEN
IF(TEXT4.EQ.'NONE') THEN
NGCOND=NGRP
DO IGR=1,NGRP
IGCOND(IGR)=IGR
ENDDO
GO TO 30
ENDIF
NGCOND=1
IGCOND(NGCOND)=NGRP
GO TO 40
ELSE IF(INDIC.EQ.1) THEN
170 IF(NITMA.GT.NGRP) NITMA=NGRP
NGCOND=NGCOND+1
IGCOND(NGCOND)=NITMA
CALL REDGET (INDIC,NITMA,FLOTT,TEXT4,DFLOTT)
IF(INDIC.EQ.1) THEN
GO TO 170
ELSE IF(INDIC.EQ.3) THEN
GO TO 40
ELSE
CALL XABORT('OUTDRV: INTEGER OR CHARACTER DATA EXPECTED.')
ENDIF
ELSE
CALL XABORT('OUTDRV: INTEGER OR CHARACTER DATA EXPECTED.')
ENDIF
ELSE IF(TEXT4.EQ.'INTG') THEN
* COMPUTE AND DISPLAY THE MACRO-ZONE REACTION RATES.
* READ THE MACRO-ZONES DEFINITION.
IF(IMPX.GT.0) WRITE(6,330) (IGCOND(IG),IG=1,NGCOND)
CALL OUTHOM (MAXNEL,IPGEOM,IMPX,NEL,IELEM,ICOL,HTRACK,MAT,NZS,
1 IHOM)
IF(NZS.GT.NEL) CALL XABORT('OUTDRV: INVALID VALUE OF NZS.')
IF(IMPX.GT.0) WRITE(6,320) TITR
IF(IADJ.EQ.0) THEN
CALL OUTAUX(IPMAC1,IPMAC2,NBMIX,NL,NBFIS,NGRP,NEL,NUN,NALBP,
1 NZS,NGCOND,MAT,VOL,IDL,EVECT,IHOM,IGCOND,IMPX)
ELSE IF(IADJ.EQ.1) THEN
ALLOCATE(ADECT(NUN,NGRP))
CALL OUTFLX(IPFLUX,1,NGRP,NUN,LMOD,IMPX,ADECT)
CALL OUTPRO(IPMAC1,IPMAC2,NBMIX,NL,NBFIS,NGRP,NEL,NUN,NALBP,
1 NZS,NGCOND,MAT,VOL,IDL,EVECT,ADECT,IHOM,IGCOND,IMPX)
DEALLOCATE(ADECT)
ENDIF
ELSE IF(TEXT4.EQ.';') THEN
CALL KDRCPU(TK2)
TKR=TK2-TK1
WRITE(6,310) TKR
GO TO 180
ELSE
CALL XABORT('OUTDRV: '//TEXT4//' IS AN INVALID KEY WORD.')
ENDIF
GO TO 30
*----
* SCRATCH STORAGE DEALLOCATION
*----
180 DEALLOCATE(FLUXC,SGD,EVECT,IGCOND,IHOM)
RETURN
*
300 FORMAT(/9H OUTDRV: ,A7,28H FLUX NORMALIZATION FACTOR =,1P,E13.5)
305 FORMAT(/9H OUTDRV: ,A7,30H SOURCE NORMALIZATION FACTOR =,1P,E13.5)
310 FORMAT(/49H OUTDRV: CPU TIME FOR REACTION RATE CALCULATION =,F7.3)
320 FORMAT(/12H OUTDRV: ***,A72,3H***)
330 FORMAT(/20H CONDENSATION INDEX:/(1X,14I5))
END
|