summaryrefslogtreecommitdiff
path: root/Trivac/src/OUTAUX.f
blob: 64a2567b270b44c6eafc3cdf37ae1a7d337c41b5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
*DECK OUTAUX
      SUBROUTINE OUTAUX (IPMAC1,IPMAC2,NBMIX,NL,NBFIS,NGRP,NEL,NUN,
     1 NALBP,NZS,NGCOND,MAT,VOL,IDL,EVECT,IHOM,IGCOND,IMPX)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Perform homogenization into NZS regions and condensation into NGCOND
* macrogroups based on averaged fluxes contained in EVECT. Create an
* output extended macrolib containing homogenized volumes, integrated
* fluxes and cross sections.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IPMAC1  L_MACROLIB pointer to the input macrolib.
* IPMAC2  L_MACROLIB pointer to the output extended macrolib.
* NBMIX   number of material mixtures.
* NL      scattering anisotropy.
* NBFIS   number of fissionable isotopes.
* NGRP    total number of energy groups.
* NEL     number of finite elements.
* NUN     number of unknowns per energy group.
* NALBP   number of physical albedos.
* NZS     number of homogenized regions so that NZS=max(IHOM(i)).
* NGCOND  number of macrogroups after energy condensation.
* MAT     index-number of the mixture type assigned to each volume.
* VOL     volumes.
* IDL     position of the average flux component associated with
*         each volume.
* EVECT   unknowns.
* IHOM    homogenized index assigned to each element.
* IGCOND  limit of condensed groups.
* IMPX    print parameter (equal to zero for no print).
*
*-----------------------------------------------------------------------
*
      USE GANLIB
*----
*  SUBROUTINE ARGUMENTS
*----
      TYPE(C_PTR) IPMAC1,IPMAC2
      PARAMETER(NREAC=11)
      INTEGER NBMIX,NL,NBFIS,NGRP,NEL,NUN,NALBP,NZS,NGCOND,MAT(NEL),
     1 IDL(NEL),IHOM(NEL),IGCOND(NGCOND),IMPX
      REAL VOL(NEL),EVECT(NUN,NGRP)
*----
*  LOCAL VARIABLES
*----
      TYPE(C_PTR) JPMAC1,KPMAC1,JPMAC2,KPMAC2
      PARAMETER(NSTATE=40)
      CHARACTER HREAC(NREAC)*12,TEXT12*12,SUFF*2,TEXT6*6
      INTEGER IDATA(NSTATE)
      LOGICAL LNUSIG,LESTOP,LFIXE,LREAC(NREAC)
*----
*  ALLOCATABLE ARRAYS
*----
      INTEGER, DIMENSION(:), ALLOCATABLE :: IJJ,NJJ,IPOS
      REAL, DIMENSION(:), ALLOCATABLE :: VOLI,WORK,SCAT,RATE,GAR,RATEF,
     1 DEN,DEN2
      REAL, DIMENSION(:,:), ALLOCATABLE :: FLINT,CHI,ZUFIS,ALBPGR,
     1 ALBP,OUTR,ESTOP,DEN3
      REAL, DIMENSION(:,:,:), ALLOCATABLE :: OUTSC
      DOUBLE PRECISION, DIMENSION(:,:), ALLOCATABLE :: ACCUM
*----
*  DATA STATEMENT
*----
      DATA HREAC/'NTOT0','SIGW00','NUSIGF','NFTOT','H-FACTOR',
     1 'OVERV','DIFF','DIFFX','DIFFY','DIFFZ','C-FACTOR'/
*----
*  SCRATCH STORAGE ALLOCATION
*   OUTR(IBM,NREAC+1): volume
*   OUTR(IBM,NREAC+2): integrated direct flux
*   OUTR(IBM,NREAC+3): fission spectrum
*   OUTR(IBM,NREAC+4): fixed sources
*----
      ALLOCATE(VOLI(NZS),WORK(NZS),RATE(NZS),FLINT(NZS,NGRP),
     1 CHI(NBMIX,NBFIS),ZUFIS(NBMIX,NBFIS),OUTR(NZS+1,NREAC+4),
     2 OUTSC(NZS,NL+1,NGCOND),GAR(NGRP),ALBPGR(NALBP,NGRP),
     3 ALBP(NALBP,NGCOND),ESTOP(NZS,NGRP+1))
      ALLOCATE(ACCUM(NZS,NBFIS))
*
      ALBP(:NALBP,:NGCOND)=0.0
      ESTOP(:NZS,:NGRP+1)=0.0
      LNUSIG=.FALSE.
      LESTOP=.FALSE.
      LFIXE=.FALSE.
      LREAC(:NREAC)=.FALSE.
*----
*  RECOVER PHYSICAL ALBEDOS.
*----
      IF(NALBP.GT.0) CALL LCMGET(IPMAC1,'ALBEDO',ALBPGR)
*----
*  DIRECT FLUX CALCULATION.
*----
      VOLI(:NZS)=0.0
      FLINT(:NZS,:NGRP)=0.0
      DO 20 K=1,NEL
      IBM=IHOM(K)
      IPFL=IDL(K)
      IF((IBM.NE.0).AND.(MAT(K).NE.0).AND.(IPFL.NE.0)) THEN
         VOLI(IBM)=VOLI(IBM)+VOL(K)
         DO 10 IGR=1,NGRP
         FLINT(IBM,IGR)=FLINT(IBM,IGR)+EVECT(IPFL,IGR)*VOL(K)
   10    CONTINUE
      ENDIF
   20 CONTINUE
      CALL LCMPUT(IPMAC2,'VOLUME',NZS,2,VOLI)
*----
*  FISSION RATE CALCULATION.
*----
      IF(IMPX.GT.0) WRITE(6,'(/35H OUTAUX: REACTION RATE CALCULATION.)')
      JPMAC1=LCMGID(IPMAC1,'GROUP')
      JPMAC2=LCMLID(IPMAC2,'GROUP',NGCOND)
      IF(NBFIS.GT.0) THEN
         ACCUM(:NZS,:NBFIS)=0.0D0
         DO 100 IGR=1,NGRP
         KPMAC1=LCMGIL(JPMAC1,IGR)
         CALL LCMGET(KPMAC1,'NUSIGF',ZUFIS)
         DO 90 IFISS=1,NBFIS
         DO 80 K=1,NEL
         IBM=IHOM(K)
         L=MAT(K)
         IPFL=IDL(K)
         IF((IBM.NE.0).AND.(L.NE.0).AND.(IPFL.NE.0)) THEN
            ACCUM(IBM,IFISS)=ACCUM(IBM,IFISS)+EVECT(IPFL,IGR)*VOL(K)*
     1      ZUFIS(L,IFISS)
         ENDIF
   80    CONTINUE
   90    CONTINUE
  100    CONTINUE
      ENDIF
*----
*  LOOP OVER ENERGY GROUP LIST.
*----
      IGRFIN=0
      DO 500 IGRC=1,NGCOND
      IGRDEB=IGRFIN+1
      IGRFIN=IGCOND(IGRC)
      OUTR(:NZS+1,:NREAC+4)=0.0
      OUTSC(:NZS,:NL+1,:NGCOND)=0.0
      ALLOCATE(RATEF(NZS),DEN(NZS))
      RATEF(:NZS)=0.0
      DEN(:NZS)=0.0
      DO 310 IGR=IGRDEB,IGRFIN
      KPMAC1=LCMGIL(JPMAC1,IGR)
      DO 110 IBM=1,NZS
      OUTR(IBM,NREAC+2)=OUTR(IBM,NREAC+2)+FLINT(IBM,IGR)
  110 CONTINUE
*----
*  SET VOLUMES.
*----
      DO 120 IBM=1,NZS
      OUTR(IBM,NREAC+1)=VOLI(IBM)
  120 CONTINUE
*----
*  REACTION RATE CALCULATION.
*----
      DO 150 IREAC=1,NREAC
      CALL LCMLEN(KPMAC1,HREAC(IREAC),LENGT,ITYLCM)
      LREAC(IREAC)=LREAC(IREAC).OR.(LENGT.NE.0)
      IF((HREAC(IREAC).EQ.'H-FACTOR').AND.(LENGT.EQ.0)) THEN
         WRITE(6,'(/46H OUTAUX: *** WARNING *** NO H-FACTOR FOUND ON ,
     1   25HLCM. USE NU*SIGF INSTEAD.)')
         LNUSIG=.TRUE.
         GO TO 150
      ELSE IF(HREAC(IREAC).EQ.'NUSIGF') THEN
         GO TO 150
      ELSE IF(HREAC(IREAC).EQ.'SIGW00') THEN
         GO TO 150
      ELSE
         TEXT12=HREAC(IREAC)
      ENDIF
      IF(LENGT.GT.0) THEN
         IF(LENGT.GT.NBMIX) CALL XABORT('OUTAUX: INVALID LENGTH FOR '//
     1   HREAC(IREAC)//' CROSS SECTIONS.')
         CALL LCMGET(KPMAC1,TEXT12,WORK)
         RATE(:NZS)=0.0
         DO 130 K=1,NEL
         IBM=IHOM(K)
         L=MAT(K)
         IPFL=IDL(K)
         IF((IBM.NE.0).AND.(L.NE.0).AND.(IPFL.NE.0)) THEN
            RATE(IBM)=RATE(IBM)+EVECT(IPFL,IGR)*VOL(K)*WORK(L)
         ENDIF
  130    CONTINUE
         DO 140 IBM=1,NZS
         OUTR(IBM,IREAC)=OUTR(IBM,IREAC)+RATE(IBM)
  140    CONTINUE
      ENDIF
  150 CONTINUE
*----
*  FIXED SOURCES
*----
      CALL LCMLEN(KPMAC1,'FIXE',LENGT,ITYLCM)
      IF(LENGT.GT.0) THEN
         LFIXE=.TRUE.
         IF(LENGT.GT.NBMIX) CALL XABORT('OUTAUX: INVALID LENGTH FOR '//
     1   'FIXE SOURCE.')
         CALL LCMGET(KPMAC1,'FIXE',WORK)
         RATE(:NZS)=0.0
         DO 160 K=1,NEL
         IBM=IHOM(K)
         L=MAT(K)
         IPFL=IDL(K)
         IF((IBM.NE.0).AND.(L.NE.0).AND.(IPFL.NE.0)) THEN
            RATE(IBM)=RATE(IBM)+VOL(K)*WORK(L)
         ENDIF
  160    CONTINUE
         DO 170 IBM=1,NZS
         OUTR(IBM,NREAC+4)=OUTR(IBM,NREAC+4)+RATE(IBM)
  170    CONTINUE
      ENDIF
*----
*  SCATTERING MATRIX INFORMATION IGR <-- JGR.
*----
      ALLOCATE(IJJ(NBMIX),NJJ(NBMIX),IPOS(NBMIX))
      ALLOCATE(SCAT(NBMIX*NGRP))
      DO 220 IL=1,NL
      WRITE(SUFF,'(I2.2)') IL-1
      CALL LCMLEN(KPMAC1,'NJJS'//SUFF,LENGT,ITYLCM)
      IF(LENGT.GT.0) THEN
         IF(LENGT.GT.NBMIX) CALL XABORT('OUTAUX: INVALID LENGTH FOR '//
     1   'SCATTERING CROSS SECTIONS.')
         CALL LCMLEN(KPMAC1,'SCAT'//SUFF,LENGT,ITYLCM)
         IF(LENGT.GT.NBMIX*NGRP) CALL XABORT('OUTAUX: SCAT OVERFLOW.')
         CALL LCMGET(KPMAC1,'NJJS'//SUFF,NJJ)
         CALL LCMGET(KPMAC1,'IJJS'//SUFF,IJJ)
         CALL LCMGET(KPMAC1,'IPOS'//SUFF,IPOS)
         CALL LCMGET(KPMAC1,'SCAT'//SUFF,SCAT)
         IPOSDE=0
         DO 210 K=1,NEL
         IBM=IHOM(K)
         L=MAT(K)
         IPFL=IDL(K)
         IF((IBM.NE.0).AND.(L.NE.0).AND.(IPFL.NE.0)) THEN
            GAR(:NGRP)=0.0
            IPOSDE=IPOS(L)-1
            DO 180 JGR=IJJ(L),IJJ(L)-NJJ(L)+1,-1
            IPOSDE=IPOSDE+1
            GAR(JGR)=SCAT(IPOSDE)
  180       CONTINUE
            JGRFIN=0
            DO 200 JGRC=1,NGCOND
            JGRDEB=JGRFIN+1
            JGRFIN=IGCOND(JGRC)
            DO 190 JGR=JGRDEB,JGRFIN
            OUTSC(IBM,IL,JGRC)=OUTSC(IBM,IL,JGRC)+EVECT(IPFL,JGR)*
     1      VOL(K)*GAR(JGR)
  190       CONTINUE
  200       CONTINUE
         ENDIF
  210    CONTINUE
         IF(IL.EQ.1) OUTR(:NZS,2)=OUTSC(:NZS,IL,IGRC)
      ENDIF
  220 CONTINUE
      DEALLOCATE(SCAT)
      DEALLOCATE(IJJ,NJJ,IPOS)
*----
*  FISSION SPECTRUM AND NUSIGF HOMOGENIZATION.
*----
      IF(NBFIS.GT.0) THEN
         CALL LCMLEN(KPMAC1,'NUSIGF',LENGT,ITYLCM)
         IF(LENGT.NE.NBMIX*NBFIS) CALL XABORT('OUTAUX: INVALID LENGTH '
     1   //'FOR FISSION SPECTRUM.')
         CALL LCMGET(KPMAC1,'NUSIGF',ZUFIS)
         CALL LCMLEN(KPMAC1,'CHI',LENGT,ITYLCM)
         DEN(:NZS)=0.0
         IF(LENGT.EQ.0) THEN
            IF(IGR.EQ.IGRDEB) OUTR(:NZS,NREAC+3)=1.0
         ELSE
            CALL LCMGET(KPMAC1,'CHI',CHI)
            DO 240 K=1,NEL
            IBM=IHOM(K)
            L=MAT(K)
            IF((IBM.NE.0).AND.(L.NE.0)) THEN
               DO 230 IFISS=1,NBFIS
               RATEF(IBM)=RATEF(IBM)+CHI(L,IFISS)*REAL(ACCUM(IBM,IFISS))
               DEN(IBM)=DEN(IBM)+REAL(ACCUM(IBM,IFISS))
  230          CONTINUE
            ENDIF
  240       CONTINUE
         ENDIF
         DO 260 IFISS=1,NBFIS
         DO 250 K=1,NEL
         IBM=IHOM(K)
         L=MAT(K)
         IPFL=IDL(K)
         IF((IBM.NE.0).AND.(L.NE.0).AND.(IPFL.NE.0)) THEN
           OUTR(IBM,3)=OUTR(IBM,3)+EVECT(IPFL,IGR)*VOL(K)*ZUFIS(L,IFISS)
         ENDIF
  250    CONTINUE
  260    CONTINUE
      ENDIF
*----
*  CONDENSE PHYSICAL ALBEDOS.
*----
      IF(NALBP.GT.0) THEN
         DO 280 IAL=1,NALBP
         DO 270 IBM=1,NZS
         ALBP(IAL,IGRC)=ALBP(IAL,IGRC)+ALBPGR(IAL,IGR)*FLINT(IBM,IGR)
  270    CONTINUE
  280    CONTINUE
      ENDIF
*----
*  RECOVER AND HOMOGENIZE STOPPING POWERS
*----
      CALL LCMLEN(KPMAC1,'ESTOPW',LENGT,ITYLCM)
      IF(LENGT.EQ.2*NBMIX) THEN
         ALLOCATE(DEN3(NBMIX,2))
         LESTOP=.TRUE.
         CALL LCMGET(KPMAC1,'ESTOPW',DEN3)
         DO 290 K=1,NEL
         IBM=IHOM(K)
         L=MAT(K)
         IPFL=IDL(K)
         IF((IBM.NE.0).AND.(L.NE.0).AND.(IPFL.NE.0)) THEN
            IF(IGR.EQ.1) THEN
               FACTOR=EVECT(IPFL,IGR)/FLINT(IBM,IGR)
            ELSE
               FACTOR=(EVECT(IPFL,IGR-1)+EVECT(IPFL,IGR))/
     1         (FLINT(IBM,IGR-1)+FLINT(IBM,IGR))
            ENDIF
            ESTOP(IBM,IGR)=ESTOP(IBM,IGR)+FACTOR*VOL(K)*DEN3(L,1)
         ENDIF
  290    CONTINUE
         IF(IGR.EQ.NGRP) THEN
            DO 300 K=1,NEL
            IBM=IHOM(K)
            L=MAT(K)
            IPFL=IDL(K)
            IF((IBM.NE.0).AND.(L.NE.0).AND.(IPFL.NE.0)) THEN
               FACTOR=EVECT(IPFL,IGR)/FLINT(IBM,IGR)
               ESTOP(IBM,IGR+1)=ESTOP(IBM,IGR+1)+FACTOR*VOL(K)*DEN3(L,2)
            ENDIF
  300       CONTINUE
         ENDIF
         DEALLOCATE(DEN3)
      ENDIF
  310 CONTINUE
*
      DO 340 K=1,NEL
      IBM=IHOM(K)
      L=MAT(K)
      IPFL=IDL(K)
      IF((IBM.NE.0).AND.(L.NE.0).AND.(IPFL.NE.0)) THEN
        JGRFIN=0
        DO 330 JGRC=1,NGCOND
        JGRDEB=JGRFIN+1
        JGRFIN=IGCOND(JGRC)
        DO 320 JGR=JGRDEB,JGRFIN
        OUTSC(IBM,NL+1,JGRC)=OUTSC(IBM,NL+1,JGRC)+EVECT(IPFL,JGR)*VOL(K)
  320   CONTINUE
  330   CONTINUE
      ENDIF
  340 CONTINUE
      IF(NBFIS.GT.0) THEN
         DO 350 IBM=1,NZS
         IF(DEN(IBM).NE.0.0) OUTR(IBM,NREAC+3)=RATEF(IBM)/DEN(IBM)
  350    CONTINUE
      ENDIF
      DEALLOCATE(DEN,RATEF)
*----
*  PRINT THE REACTION RATES:
*----
      IF(IMPX.GT.0) THEN
         DO 360 I=1,NREAC+3
         OUTR(NZS+1,I)=0.0
  360    CONTINUE
         WRITE(6,520) IGRC,'VOLUME      ','FLUX-INTG   ',
     1   (HREAC(I),I=1,6),'CHI         '
         DO 380 IBM=1,NZS
         DO 370 I=1,NREAC+3
         OUTR(NZS+1,I)=OUTR(NZS+1,I)+OUTR(IBM,I)
  370    CONTINUE
         WRITE(6,530) IBM,OUTR(IBM,NREAC+1),OUTR(IBM,NREAC+2),
     1   (OUTR(IBM,I),I=1,6),OUTR(IBM,NREAC+3)
  380    CONTINUE
         WRITE(6,540) OUTR(NZS+1,NREAC+1),OUTR(NZS+1,NREAC+2),
     1   (OUTR(NZS+1,I),I=1,6)
      ENDIF
*----
*  COMPUTE HOMOGENIZED-CONDENSED MACROLIB
*----
      KPMAC2=LCMDIL(JPMAC2,IGRC)
      CALL LCMPUT(KPMAC2,'FLUX-INTG',NZS,2,OUTR(1,NREAC+2))
      DO 400 IREAC=1,NREAC
      IF(LREAC(IREAC)) THEN
         DO 390 IBM=1,NZS
         RATE(IBM)=OUTR(IBM,IREAC)
         IF(RATE(IBM).NE.0.0) RATE(IBM)=RATE(IBM)/OUTR(IBM,NREAC+2)
  390    CONTINUE
         CALL LCMPUT(KPMAC2,HREAC(IREAC),NZS,2,RATE)
         IF(LNUSIG.AND.(IREAC.EQ.3)) THEN
            CALL LCMPUT(KPMAC2,'H-FACTOR',NZS,2,RATE)
         ENDIF
      ENDIF
  400 CONTINUE
      IF(LREAC(3)) CALL LCMPUT(KPMAC2,'CHI',NZS,2,OUTR(1,NREAC+3))
      IF(LFIXE) THEN
         DO 410 IBM=1,NZS
         RATE(IBM)=OUTR(IBM,NREAC+4)
         IF(RATE(IBM).NE.0.0) RATE(IBM)=RATE(IBM)/VOLI(IBM)
  410    CONTINUE
         CALL LCMPUT(KPMAC2,'FIXE',NZS,2,RATE)
      ENDIF
*
      ALLOCATE(IJJ(NZS),NJJ(NZS),IPOS(NZS))
      ALLOCATE(SCAT(NZS*NGCOND))
      DO 460 IL=1,NL
      WRITE(SUFF,'(I2.2)') IL-1
      DO 430 IBM=1,NZS
      IGMIN=IGRC
      IGMAX=IGRC
      DO 420 JGRC=NGCOND,1,-1
      IF(OUTSC(IBM,IL,JGRC).NE.0.0) THEN
         IGMIN=MIN(IGMIN,JGRC)
         IGMAX=MAX(IGMAX,JGRC)
         OUTSC(IBM,IL,JGRC)=OUTSC(IBM,IL,JGRC)/OUTSC(IBM,NL+1,JGRC)
      ENDIF
  420 CONTINUE
      IJJ(IBM)=IGMAX
      NJJ(IBM)=IGMAX-IGMIN+1
  430 CONTINUE
      IPOSDE=0
      DO 450 IBM=1,NZS
      IPOS(IBM)=IPOSDE+1
      DO 440 JGRC=IJJ(IBM),IJJ(IBM)-NJJ(IBM)+1,-1
      IPOSDE=IPOSDE+1
      SCAT(IPOSDE)=OUTSC(IBM,IL,JGRC)
  440 CONTINUE
  450 CONTINUE
      CALL LCMPUT(KPMAC2,'SCAT'//SUFF,IPOSDE,2,SCAT)
      CALL LCMPUT(KPMAC2,'IPOS'//SUFF,NZS,1,IPOS)
      CALL LCMPUT(KPMAC2,'NJJS'//SUFF,NZS,1,NJJ)
      CALL LCMPUT(KPMAC2,'IJJS'//SUFF,NZS,1,IJJ)
      CALL LCMPUT(KPMAC2,'SIGW'//SUFF,NZS,2,OUTSC(1,IL,IGRC))
  460 CONTINUE
      DEALLOCATE(SCAT)
      DEALLOCATE(IJJ,NJJ,IPOS)
*
      IF(NALBP.GT.0) THEN
         DFI=0.0
         DO 470 IBM=1,NZS
         DFI=DFI+OUTR(IBM,NREAC+2)
  470    CONTINUE
         DO 480 IAL=1,NALBP
         ALBP(IAL,IGRC)=ALBP(IAL,IGRC)/DFI
  480    CONTINUE
      ENDIF
*----
*  SAVE STOPPING POWERS
*----
      IF(LESTOP) THEN
         ALLOCATE(DEN3(NZS,2))
         DO 490 IBM=1,NZS
         IF(IGRC.EQ.1) THEN
            DEN3(IBM,1)=ESTOP(IBM,1)
         ELSE
            DEN3(IBM,1)=ESTOP(IBM,IGCOND(IGRC-1))
         ENDIF
         DEN3(IBM,2)=ESTOP(IBM,IGCOND(IGRC)+1)
  490    CONTINUE
         CALL LCMPUT(KPMAC2,'ESTOPW',NZS*2,2,DEN3)
         DEALLOCATE(DEN3)
      ENDIF
  500 CONTINUE
*----
*  END OF LOOP OVER MACROGROUPS
*----
*----
*  RECOVER AND CONDENSE ENERGY MESH
*----
      CALL LCMLEN(IPMAC1,'ENERGY',LENGT,ITYLCM)
      IF(LENGT.EQ.NGRP+1) THEN
         ALLOCATE(DEN(NGRP+1),DEN2(NGCOND+1))
         CALL LCMGET(IPMAC1,'ENERGY',DEN)
         DEN2(1)=DEN(1)
         DO 510 IGRC=1,NGCOND
         DEN2(IGRC+1)=DEN(IGCOND(IGRC)+1)
  510    CONTINUE
         CALL LCMPUT(IPMAC2,'ENERGY',NGCOND+1,2,DEN2)
         DEALLOCATE(DEN2,DEN)
      ENDIF
*----
*  SAVE ALBEDO AND STATE-VECTOR
*----
      IF(NALBP.GT.0) THEN
         CALL LCMPUT(IPMAC2,'ALBEDO',NALBP*NGCOND,2,ALBP)
      ENDIF
      CALL LCMLEN(IPMAC1,'PARTICLE',LENGT,ITYLCM)
      IF(LENGT.GT.0) THEN
        CALL LCMGTC(IPMAC1,'PARTICLE',12,TEXT6)
        CALL LCMPTC(IPMAC2,'PARTICLE',12,TEXT6)
      ENDIF
      IDATA(:NSTATE)=0
      IDATA(1)=NGCOND
      IDATA(2)=NZS
      IDATA(3)=NL
      IDATA(4)=1
      IDATA(8)=NALBP
      IF(LREAC(7)) THEN
         IDATA(9)=1
      ELSE IF(LREAC(8)) THEN
         IDATA(9)=2
      ENDIF
      IDATA(15)=0
      CALL LCMPUT(IPMAC2,'STATE-VECTOR',NSTATE,1,IDATA)
*----
*  SCRATCH STORAGE DEALLOCATION
*----
      DEALLOCATE(ACCUM)
      DEALLOCATE(ESTOP,ALBP,ALBPGR,GAR,OUTSC,OUTR,ZUFIS,CHI,FLINT,
     1 RATE,WORK,VOLI)
      RETURN
*
  520 FORMAT(/' G R O U P   : ',I3/1X,'IHOM',9A14)
  530 FORMAT(1X,I4,1P,9E14.5)
  540 FORMAT(/5H  SUM,1P,8E14.5)
      END