summaryrefslogtreecommitdiff
path: root/Trivac/src/NSSMXYZ.f90
blob: 92a9db7cb4ca9990028aa823880303031d93712d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
subroutine NSSMXYZ(ll4f,ndim,nx,ny,nz,nmix,mat,xx,yy,zz,idl,vol,iqfr,qfr, &
& diff,drift,sigt,mux,muy,muz,imax,imay,imaz,ipy,ipz,a11x,a11y,a11z)
!
!-----------------------------------------------------------------------
!
!Purpose:
! Assembly of system matrices for coarse mesh finite differences with
! nodal correction.
!
!Copyright:
! Copyright (C) 2022 Ecole Polytechnique de Montreal
! This library is free software; you can redistribute it and/or
! modify it under the terms of the GNU Lesser General Public
! License as published by the Free Software Foundation; either
! version 2.1 of the License, or (at your option) any later version
!
!Author(s): A. Hebert
!
!Parameters: input
! ll4f    total number of averaged flux unknown per energy group.
! ndim    number of dimensions (1, 2, or 3).
! nx      number of nodes in the X direction.
! ny      number of nodes in the Y direction.
! nz      number of nodes in the Z direction.
! nmix    number of mixtures.
! mat     node mixtures.
! xx      node widths in the X direction.
! yy      node widths in the Y direction.
! zz      node widths in the Z direction.
! idl     position of averaged fluxes in unknown vector.
! vol     node volumes.
! iqfr    boundary conditions.
! qfr     albedo functions.
! diff    diffusion coefficients.
! drift   drift coefficients.
! sigt    removal macroscopic cross section.
! mux     X-oriented compressed storage mode indices.
! muy     Y-oriented compressed storage mode indices.
! muz     Z-oriented compressed storage mode indices.
! imax    X-oriented position of each first non-zero column element.
! imay    Y-oriented position of each first non-zero column element.
! imaz    Z-oriented position of each first non-zero column element.
! ipy     Y-oriented permutation matrices.
! ipz     Z-oriented permutation matrices.
!
!Parameters: output
! a11x    X-directed  matrices corresponding to the divergence (i.e.
!         leakage) and removal terms. Dimensionned to imax(ll4f).
! a11y    Y-directed  matrices corresponding to the divergence (i.e.
!         leakage) and removal terms. Dimensionned to imay(ll4f).
! a11z    Z-directed  matrices corresponding to the divergence (i.e.
!         leakage) and removal terms. Dimensionned to imaz(ll4f).
!
!-----------------------------------------------------------------------
!
  !----
  !  subroutine arguments
  !----
  integer,intent(in) :: ll4f,ndim,nx,ny,nz,nmix,mat(nx,ny,nz),idl(nx,ny,nz), &
  & iqfr(6,nx,ny,nz),mux(ll4f),muy(ll4f),muz(ll4f),imax(ll4f),imay(ll4f),imaz(ll4f), &
  & ipy(ll4f),ipz(ll4f)
  real,intent(in) :: xx(nx,ny,nz),yy(nx,ny,nz),zz(nx,ny,nz),vol(nx,ny,nz), &
  & qfr(6,nx,ny,nz),diff(nmix),drift(6,nx,ny,nz),sigt(nmix)
  real,intent(out) :: a11x(*),a11y(*),a11z(*)
  !----
  !  local variables
  !----
  real :: coef(6),codr(6)
  !
  a11x(:imax(ll4f))=0.0
  if(ndim > 1) a11y(:imay(ll4f))=0.0
  if(ndim == 3) a11z(:imaz(ll4f))=0.0
  do k=1,nz
    do j=1,ny
      do i=1,nx
        ibm=mat(i,j,k)
        if(ibm <= 0) cycle
        kel=idl(i,j,k)
        if(kel == 0) cycle
        vol0=vol(i,j,k)
        call NSSCO(nx,ny,nz,nmix,i,j,k,mat,xx,yy,zz,diff,iqfr(1,i,j,k),qfr(1,i,j,k),coef)
        coef(1:2)=coef(1:2)*vol0/xx(i,j,k)
        coef(3:4)=coef(3:4)*vol0/yy(i,j,k)
        coef(5:6)=coef(5:6)*vol0/zz(i,j,k)
        codr(1:2)=drift(1:2,i,j,k)*vol0/xx(i,j,k)
        codr(3:4)=drift(3:4,i,j,k)*vol0/yy(i,j,k)
        codr(5:6)=drift(5:6,i,j,k)*vol0/zz(i,j,k)
        !
        ! x-directed couplings
        kel2=0
        kk1=iqfr(1,i,j,k)
        if(kk1 == -4) then
          kel2=idl(nx,j,k)
        else if(kk1 == 0) then
          kel2=idl(i-1,j,k)
        endif
        if(kel2 /= 0) then
          if(kel2 <= kel) then
            key=mux(kel)-kel+kel2
            a11x(key)=a11x(key)-coef(1)+codr(1)
          else
            key=mux(kel2)+kel2-kel
            a11x(key)=a11x(key)-coef(1)+codr(1)
          endif
        endif
        kel2=0
        kk2=iqfr(2,i,j,k)
        if(kk2 == -4) then
          kel2=idl(1,j,k)
        else if(kk2 == 0) then
          kel2=idl(i+1,j,k)
        endif
        if(kel2 /= 0) then
          if(kel2 <= kel) then
            key=mux(kel)-kel+kel2
            a11x(key)=a11x(key)-coef(2)-codr(2)
          else
            key=mux(kel2)+kel2-kel
            a11x(key)=a11x(key)-coef(2)-codr(2)
          endif
        endif
        key0=mux(kel)
        a11x(key0)=a11x(key0)+coef(1)+codr(1)+coef(2)-codr(2)
        a11x(key0)=a11x(key0)+coef(3)+codr(3)+coef(4)-codr(4)
        a11x(key0)=a11x(key0)+coef(5)+codr(5)+coef(6)-codr(6)
        a11x(key0)=a11x(key0)+sigt(ibm)*vol0
        !
        if(ndim > 1) then
          ! y-directed couplings
          kel2=0
          kk3=iqfr(3,i,j,k)
          if(kk3 == -4) then
            kel2=idl(i,ny,k)
          else if(kk3 == 0) then
            kel2=idl(i,j-1,k)
          endif
          ind1=ipy(kel)
          if(kel2 /= 0) then
            ind2=ipy(kel2)
            if(kel2 <= kel) then
              key=muy(ind1)-ind1+ind2
              a11y(key)=a11y(key)-coef(3)+codr(3)
            else
              key=muy(ind2)+ind2-ind1
              a11y(key)=a11y(key)-coef(3)+codr(3)
            endif
          endif
          kel2=0
          kk4=iqfr(4,i,j,k)
          if(kk4 == -4) then
            kel2=idl(i,1,k)
          else if(kk4 == 0) then
            kel2=idl(i,j+1,k)
          endif
          if(kel2 /= 0) then
            ind2=ipy(kel2)
            if(kel2 <= kel) then
              key=muy(ind1)-ind1+ind2
              a11y(key)=a11y(key)-coef(4)-codr(4)
            else
              key=muy(ind2)+ind2-ind1
              a11y(key)=a11y(key)-coef(4)-codr(4)
            endif
          endif
          key0=muy(ind1)
          a11y(key0)=a11y(key0)+coef(1)+codr(1)+coef(2)-codr(2)
          a11y(key0)=a11y(key0)+coef(3)+codr(3)+coef(4)-codr(4)
          a11y(key0)=a11y(key0)+coef(5)+codr(5)+coef(6)-codr(6)
          a11y(key0)=a11y(key0)+sigt(ibm)*vol0
        endif
        !
        if(ndim > 2) then
          ! z-directed couplings
          kel2=0
          kk5=iqfr(5,i,j,k)
          if(kk5 == -4) then
            kel2=idl(i,j,nz)
          else if(kk5 == 0) then
            kel2=idl(i,j,k-1)
          endif
          ind1=ipz(kel)
          if(kel2 /= 0) then
            ind2=ipz(kel2)
            if(kel2 <= kel) then
              key=muz(ind1)-ind1+ind2
              a11z(key)=a11z(key)-coef(5)+codr(5)
            else
              key=muz(ind2)+ind2-ind1
              a11z(key)=a11z(key)-coef(5)+codr(5)
            endif
          endif
          kel2=0
          kk6=iqfr(6,i,j,k)
          if(kk6 == -4) then
            kel2=idl(i,j,1)
          else if(kk6 == 0) then
            kel2=idl(i,j,k+1)
          endif
          if(kel2 /= 0) then
            ind2=ipz(kel2)
            if(kel2 <= kel) then
              key=muz(ind1)-ind1+ind2
              a11z(key)=a11z(key)-coef(6)-codr(6)
            else
              key=muz(ind2)+ind2-ind1
              a11z(key)=a11z(key)-coef(6)-codr(6)
            endif
          endif
          key0=muz(ind1)
          a11z(key0)=a11z(key0)+coef(1)+codr(1)+coef(2)-codr(2)
          a11z(key0)=a11z(key0)+coef(3)+codr(3)+coef(4)-codr(4)
          a11z(key0)=a11z(key0)+coef(5)+codr(5)+coef(6)-codr(6)
          a11z(key0)=a11z(key0)+sigt(ibm)*vol0
        endif
      enddo
    enddo
  enddo
  return
end subroutine NSSMXYZ