1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
|
subroutine NSSMXYZ(ll4f,ndim,nx,ny,nz,nmix,mat,xx,yy,zz,idl,vol,iqfr,qfr, &
& diff,drift,sigt,mux,muy,muz,imax,imay,imaz,ipy,ipz,a11x,a11y,a11z)
!
!-----------------------------------------------------------------------
!
!Purpose:
! Assembly of system matrices for coarse mesh finite differences with
! nodal correction.
!
!Copyright:
! Copyright (C) 2022 Ecole Polytechnique de Montreal
! This library is free software; you can redistribute it and/or
! modify it under the terms of the GNU Lesser General Public
! License as published by the Free Software Foundation; either
! version 2.1 of the License, or (at your option) any later version
!
!Author(s): A. Hebert
!
!Parameters: input
! ll4f total number of averaged flux unknown per energy group.
! ndim number of dimensions (1, 2, or 3).
! nx number of nodes in the X direction.
! ny number of nodes in the Y direction.
! nz number of nodes in the Z direction.
! nmix number of mixtures.
! mat node mixtures.
! xx node widths in the X direction.
! yy node widths in the Y direction.
! zz node widths in the Z direction.
! idl position of averaged fluxes in unknown vector.
! vol node volumes.
! iqfr boundary conditions.
! qfr albedo functions.
! diff diffusion coefficients.
! drift drift coefficients.
! sigt removal macroscopic cross section.
! mux X-oriented compressed storage mode indices.
! muy Y-oriented compressed storage mode indices.
! muz Z-oriented compressed storage mode indices.
! imax X-oriented position of each first non-zero column element.
! imay Y-oriented position of each first non-zero column element.
! imaz Z-oriented position of each first non-zero column element.
! ipy Y-oriented permutation matrices.
! ipz Z-oriented permutation matrices.
!
!Parameters: output
! a11x X-directed matrices corresponding to the divergence (i.e.
! leakage) and removal terms. Dimensionned to imax(ll4f).
! a11y Y-directed matrices corresponding to the divergence (i.e.
! leakage) and removal terms. Dimensionned to imay(ll4f).
! a11z Z-directed matrices corresponding to the divergence (i.e.
! leakage) and removal terms. Dimensionned to imaz(ll4f).
!
!-----------------------------------------------------------------------
!
!----
! subroutine arguments
!----
integer,intent(in) :: ll4f,ndim,nx,ny,nz,nmix,mat(nx,ny,nz),idl(nx,ny,nz), &
& iqfr(6,nx,ny,nz),mux(ll4f),muy(ll4f),muz(ll4f),imax(ll4f),imay(ll4f),imaz(ll4f), &
& ipy(ll4f),ipz(ll4f)
real,intent(in) :: xx(nx,ny,nz),yy(nx,ny,nz),zz(nx,ny,nz),vol(nx,ny,nz), &
& qfr(6,nx,ny,nz),diff(nmix),drift(6,nx,ny,nz),sigt(nmix)
real,intent(out) :: a11x(*),a11y(*),a11z(*)
!----
! local variables
!----
real :: coef(6),codr(6)
!
a11x(:imax(ll4f))=0.0
if(ndim > 1) a11y(:imay(ll4f))=0.0
if(ndim == 3) a11z(:imaz(ll4f))=0.0
do k=1,nz
do j=1,ny
do i=1,nx
ibm=mat(i,j,k)
if(ibm <= 0) cycle
kel=idl(i,j,k)
if(kel == 0) cycle
vol0=vol(i,j,k)
call NSSCO(nx,ny,nz,nmix,i,j,k,mat,xx,yy,zz,diff,iqfr(1,i,j,k),qfr(1,i,j,k),coef)
coef(1:2)=coef(1:2)*vol0/xx(i,j,k)
coef(3:4)=coef(3:4)*vol0/yy(i,j,k)
coef(5:6)=coef(5:6)*vol0/zz(i,j,k)
codr(1:2)=drift(1:2,i,j,k)*vol0/xx(i,j,k)
codr(3:4)=drift(3:4,i,j,k)*vol0/yy(i,j,k)
codr(5:6)=drift(5:6,i,j,k)*vol0/zz(i,j,k)
!
! x-directed couplings
kel2=0
kk1=iqfr(1,i,j,k)
if(kk1 == -4) then
kel2=idl(nx,j,k)
else if(kk1 == 0) then
kel2=idl(i-1,j,k)
endif
if(kel2 /= 0) then
if(kel2 <= kel) then
key=mux(kel)-kel+kel2
a11x(key)=a11x(key)-coef(1)+codr(1)
else
key=mux(kel2)+kel2-kel
a11x(key)=a11x(key)-coef(1)+codr(1)
endif
endif
kel2=0
kk2=iqfr(2,i,j,k)
if(kk2 == -4) then
kel2=idl(1,j,k)
else if(kk2 == 0) then
kel2=idl(i+1,j,k)
endif
if(kel2 /= 0) then
if(kel2 <= kel) then
key=mux(kel)-kel+kel2
a11x(key)=a11x(key)-coef(2)-codr(2)
else
key=mux(kel2)+kel2-kel
a11x(key)=a11x(key)-coef(2)-codr(2)
endif
endif
key0=mux(kel)
a11x(key0)=a11x(key0)+coef(1)+codr(1)+coef(2)-codr(2)
a11x(key0)=a11x(key0)+coef(3)+codr(3)+coef(4)-codr(4)
a11x(key0)=a11x(key0)+coef(5)+codr(5)+coef(6)-codr(6)
a11x(key0)=a11x(key0)+sigt(ibm)*vol0
!
if(ndim > 1) then
! y-directed couplings
kel2=0
kk3=iqfr(3,i,j,k)
if(kk3 == -4) then
kel2=idl(i,ny,k)
else if(kk3 == 0) then
kel2=idl(i,j-1,k)
endif
ind1=ipy(kel)
if(kel2 /= 0) then
ind2=ipy(kel2)
if(kel2 <= kel) then
key=muy(ind1)-ind1+ind2
a11y(key)=a11y(key)-coef(3)+codr(3)
else
key=muy(ind2)+ind2-ind1
a11y(key)=a11y(key)-coef(3)+codr(3)
endif
endif
kel2=0
kk4=iqfr(4,i,j,k)
if(kk4 == -4) then
kel2=idl(i,1,k)
else if(kk4 == 0) then
kel2=idl(i,j+1,k)
endif
if(kel2 /= 0) then
ind2=ipy(kel2)
if(kel2 <= kel) then
key=muy(ind1)-ind1+ind2
a11y(key)=a11y(key)-coef(4)-codr(4)
else
key=muy(ind2)+ind2-ind1
a11y(key)=a11y(key)-coef(4)-codr(4)
endif
endif
key0=muy(ind1)
a11y(key0)=a11y(key0)+coef(1)+codr(1)+coef(2)-codr(2)
a11y(key0)=a11y(key0)+coef(3)+codr(3)+coef(4)-codr(4)
a11y(key0)=a11y(key0)+coef(5)+codr(5)+coef(6)-codr(6)
a11y(key0)=a11y(key0)+sigt(ibm)*vol0
endif
!
if(ndim > 2) then
! z-directed couplings
kel2=0
kk5=iqfr(5,i,j,k)
if(kk5 == -4) then
kel2=idl(i,j,nz)
else if(kk5 == 0) then
kel2=idl(i,j,k-1)
endif
ind1=ipz(kel)
if(kel2 /= 0) then
ind2=ipz(kel2)
if(kel2 <= kel) then
key=muz(ind1)-ind1+ind2
a11z(key)=a11z(key)-coef(5)+codr(5)
else
key=muz(ind2)+ind2-ind1
a11z(key)=a11z(key)-coef(5)+codr(5)
endif
endif
kel2=0
kk6=iqfr(6,i,j,k)
if(kk6 == -4) then
kel2=idl(i,j,1)
else if(kk6 == 0) then
kel2=idl(i,j,k+1)
endif
if(kel2 /= 0) then
ind2=ipz(kel2)
if(kel2 <= kel) then
key=muz(ind1)-ind1+ind2
a11z(key)=a11z(key)-coef(6)-codr(6)
else
key=muz(ind2)+ind2-ind1
a11z(key)=a11z(key)-coef(6)-codr(6)
endif
endif
key0=muz(ind1)
a11z(key0)=a11z(key0)+coef(1)+codr(1)+coef(2)-codr(2)
a11z(key0)=a11z(key0)+coef(3)+codr(3)+coef(4)-codr(4)
a11z(key0)=a11z(key0)+coef(5)+codr(5)+coef(6)-codr(6)
a11z(key0)=a11z(key0)+sigt(ibm)*vol0
endif
enddo
enddo
enddo
return
end subroutine NSSMXYZ
|