summaryrefslogtreecommitdiff
path: root/Trivac/src/NSSLR3.f90
blob: 436649b0190b3540864566289b5836727a8bc790 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
subroutine NSSLR3(keff, ng, bndtl, xxx, dely, delz, diff, sigr, scat,  &
& chi, nusigf, L, R)
!
!-----------------------------------------------------------------------
!
!Purpose:
! Compute the 3D ANM coupling matrices for a single node.
!
!Copyright:
! Copyright (C) 2023 Ecole Polytechnique de Montreal
! This library is free software; you can redistribute it and/or
! modify it under the terms of the GNU Lesser General Public
! License as published by the Free Software Foundation; either
! version 2.1 of the License, or (at your option) any later version
!
!Author(s): A. Hebert
!
!Parameters: input
! keff    effective multiplication factor.
! ng      number of energy groups.
! bndtl   set to 'flat' or 'quadratic'.
! xxx     node support along X-axis.
! dely    node width along Y-axis.
! delz    node width along Z-axis.
! diff    diffusion coefficient array (cm).
! sigr    removal cross section array (cm-1).
! scat    P0 scattering cross section matrix (cm^-1).
! chi     fission spectrum array.
! nusigf  nu*fission cross section array (cm^-1).
!
!Parameters: output
! L       left nodal coupling matrix.
! R       right nodal coupling matrix.
!
!-----------------------------------------------------------------------
  !
  !----
  !  subroutine arguments
  !----
  integer, intent(in) :: ng
  real, intent(in) :: keff, xxx(4), dely, delz
  real, dimension(ng), intent(in) :: diff, sigr, chi, nusigf
  real, dimension(ng,ng), intent(in) :: scat
  character(len=12), intent(in) :: bndtl
  real(kind=8), dimension(ng,14*ng), intent(out) :: L, R
  !----
  !  local variables
  !----
  real(kind=8) :: m0(3,3),m2(3,3),m3(2,3),m4(1,3),Lambda_r,sqla,mmax2
  !----
  ! allocatable arrays
  !----
  complex(kind=8), allocatable, dimension(:,:) :: T,Lambda
  real(kind=8), allocatable, dimension(:,:) :: F,DI,T_r,TI,S,Mm,Mp,Nm,Np, &
  & GAR1,GAR2,GAR3,GAR4,Vm,Vp,Um,Up,MAT1,MAT2,S13
  !----
  ! scratch storage allocation
  !----
  allocate(F(ng,ng),T_r(ng,ng),T(ng,ng),TI(ng,ng),DI(ng,ng), &
  & Lambda(ng,ng),S(ng,ng),Mm(2*ng,2*ng),Mp(2*ng,2*ng),Nm(ng,2*ng), &
  & Np(ng,2*ng),GAR1(ng,2*ng),GAR2(ng,2*ng),GAR3(ng,14*ng), &
  & GAR4(ng,14*ng),Vm(2*ng,3*ng),Vp(2*ng,3*ng),Um(ng,3*ng), &
  & Up(ng,3*ng),MAT1(ng,14*ng),MAT2(ng,14*ng))
  !
  ! quadratic leakage and boundary conditions
  xmm=xxx(1) ; xm=xxx(2) ; xp=xxx(3) ; xpp=xxx(4) ; delx=xp-xm ;
  if(xmm == -99999.) then
    ! Vacuum or zero flux node at left boundary
    xmm=2.0*xm-xp
    m0(:3,1)=1.0d0 ; m0(1,2)=(xmm+xm)/2.0d0 ; m0(1,3)=(xmm**2+xmm*xm+xm**2)/3.0d0
    m0(2,2)=(xm+xp)/2.0d0 ; m0(2,3)=(xm**2+xm*xp+xp**2)/3.0d0
    m0(3,2)=(xp+xpp)/2.0d0 ; m0(3,3)=(xp**2+xp*xpp+xpp**2)/3.0d0
    call ALINVD(3,m0,3,ier)
    if(ier /= 0) call XABORT('NSSLR3: singular matrix.(1)')
    m0(:3,1)=0.0d0
  elseif(xpp == -99999.) then
    ! Vacuum or zero flux node at right boundary
    xpp=2.0*xp-xm
    m0(:3,1)=1.0d0 ; m0(1,2)=(xmm+xm)/2.0d0 ; m0(1,3)=(xmm**2+xmm*xm+xm**2)/3.0d0
    m0(2,2)=(xm+xp)/2.0d0 ; m0(2,3)=(xm**2+xm*xp+xp**2)/3.0d0
    m0(3,2)=(xp+xpp)/2.0d0 ; m0(3,3)=(xp**2+xp*xpp+xpp**2)/3.0d0
    call ALINVD(3,m0,3,ier)
    if(ier /= 0) call XABORT('NSSLR3: singular matrix.(2)')
    m0(:3,3)=0.0d0
  else
    ! Internal node
    m0(:3,1)=1.0d0 ; m0(1,2)=(xmm+xm)/2.0d0 ; m0(1,3)=(xmm**2+xmm*xm+xm**2)/3.0d0
    m0(2,2)=(xm+xp)/2.0d0 ; m0(2,3)=(xm**2+xm*xp+xp**2)/3.0d0
    m0(3,2)=(xp+xpp)/2.0d0 ; m0(3,3)=(xp**2+xp*xpp+xpp**2)/3.0d0
    call ALINVD(3,m0,3,ier)
    if(ier /= 0) call XABORT('NSSLR3: singular matrix.(3)')
  endif
  if(bndtl == 'flat') then
    ! flat leakage approximation
    m0(:3,:3)=0.0d0 ; m0(1,2)=1.0d0
  endif
  !----
  ! compute matrices L and R
  !----
  Mm(:,:)=0.0d0
  Mp(:,:)=0.0d0
  Nm(:,:)=0.0d0
  Np(:,:)=0.0d0
  DI(:,:)=0.0d0
  Vm(:,:)=0.0d0
  Vp(:,:)=0.0d0
  Um(:,:)=0.0d0
  Up(:,:)=0.0d0
  do ig=1,ng
    do jg=1,ng
      if(ig == jg) then
        F(ig,ig)=(chi(ig)*nusigf(ig)/keff-sigr(ig))/diff(ig)
      else
        F(ig,jg)=(chi(ig)*nusigf(jg)/keff+scat(ig,jg))/diff(ig)
      endif
    enddo
    DI(ig,ig)=1./diff(ig)
  enddo
  maxiter=40
  call ALHQR(ng,ng,F,maxiter,iter,T,Lambda)
  mmax2=0.0d0
  do ig=1,ng
    do jg=1,ng
      mmax2=max(mmax2,abs(aimag(T(ig,jg))))
    enddo
  enddo
  if(mmax2 > 1.0e-6) then
    write(6,'(3h T=)')
    do ig=1,ng
      write(6,'(1p,12e12.4)') T(ig,:)
    enddo
    call XABORT('NSSLR3: complex eigenvalues.')
  endif
  T_r(:,:)=real(T(:,:),8)
  do ig=1,ng
    Lambda_r=real(Lambda(ig,ig),8)
    sqla=sqrt(abs(Lambda_r))
    m2(:3,:3)=0.0d0
    m2(1,1)=1.0d0/Lambda_r ; m2(1,3)=-2.0d0/Lambda_r**2
    m2(2,2)=1.0d0/Lambda_r ; m2(3,3)=1.0d0/Lambda_r
    m2(:3,:3)=matmul(m2(:3,:3),m0(:3,:3))
    m3(1,1)=1.0d0 ; m3(1,2)=(xm+xp)/2. ; m3(1,3)=(xm**2+xm*xp+xp**2)/3.0d0
    m3(2,1)=0.0d0 ; m3(2,2)=-1.0d0 ; m3(2,3)=-2.0d0*xm
    m3(:2,:3)=matmul(m3(:2,:3),m2(:3,:3))
    Vm(ig,ig)=m3(1,1)   ; Vm(ig,ng+ig)=m3(1,2)   ; Vm(ig,2*ng+ig)=m3(1,3)   ;
    Vm(ng+ig,ig)=m3(2,1) ; Vm(ng+ig,ng+ig)=m3(2,2) ; Vm(ng+ig,2*ng+ig)=m3(2,3) ;
    m3(1,1)=1.0d0 ; m3(1,2)=(xm+xp)/2.0d0 ; m3(1,3)=(xm**2+xm*xp+xp**2)/3.0d0
    m3(2,1)=0.0d0 ; m3(2,2)=-1.0d0 ; m3(2,3)=-2.0d0*xp
    m3(:2,:3)=matmul(m3(:2,:3),m2(:3,:3))
    Vp(ig,ig)=m3(1,1)   ; Vp(ig,ng+ig)=m3(1,2)   ; Vp(ig,2*ng+ig)=m3(1,3)   ;
    Vp(ng+ig,ig)=m3(2,1) ; Vp(ng+ig,ng+ig)=m3(2,2) ; Vp(ng+ig,2*ng+ig)=m3(2,3) ;
    m4(1,1)=1.0d0 ; m4(1,2)=xm ; m4(1,3)=xm**2
    m4(:1,:3)=matmul(m4(:1,:3),m2(:3,:3))
    Um(ig,ig)=m4(1,1) ; Um(ig,ng+ig)=m4(1,2) ; Um(ig,2*ng+ig)=m4(1,3) ;
    m4(1,1)=1.0d0 ; m4(1,2)=xp ; m4(1,3)=xp**2
    m4(:1,:3)=matmul(m4(:1,:3),m2(:3,:3))
    Up(ig,ig)=m4(1,1) ; Up(ig,ng+ig)=m4(1,2) ; Up(ig,2*ng+ig)=m4(1,3) ;
    if(delx*sqla < 1.e-6) then
      if(Lambda_r >= 0) then
        Mm(ig,ig)=-(delx*sqla)**6/5040.+(delx*sqla)**4/120.-(delx*sqla)**2/6.+1.
        Mm(ig,ng+ig)=(delx*sqla)**5/720.-(delx*sqla)**3/24.+(delx*sqla)/2.
        Mm(ng+ig,ng+ig)=-sqla
        Mp(ng+ig,ig)=((delx*sqla)**6/120.-(delx*sqla)**4/6.+(delx*sqla)**2)/delx
        Mp(ng+ig,ng+ig)=(-(delx*sqla)**5/24.+(delx*sqla)**3/2.-(delx*sqla))/delx
        Nm(ig,ig)=1.
        Np(ig,ig)=-(delx*sqla)**6/720.+(delx*sqla)**4/24.-(delx*sqla)**2/2.+1.
        Np(ig,ng+ig)=(delx*sqla)**5/120.-(delx*sqla)**3/6.+(delx*sqla)
      else
        Mm(ig,ig)=(delx*sqla)**4/120.+(delx*sqla)**3/24.+(delx*sqla)**2/6.+(delx*sqla)/2. + 1.
        Mm(ig,ng+ig)=-(delx*sqla)**3/24.+(delx*sqla)**2/6.-(delx*sqla)/2. + 1.
        Mm(ng+ig,ig)=-sqla ; Mm(ng+ig,ng+ig)=sqla ;
        Mp(ng+ig,ig)=(-(delx*sqla)**4/6.-(delx*sqla)**3/2.-(delx*sqla)**2-(delx*sqla))/delx
        Mp(ng+ig,ng+ig)=(-(delx*sqla)**4/6+(delx*sqla)**3/2.-(delx*sqla)**2+(delx*sqla))/delx
        Nm(ig,ig)=1. ; Nm(ig,ng+ig)=1. ;
        Np(ig,ig)=(delx*sqla)**4/24.+(delx*sqla)**3/6.+(delx*sqla)**2/2.+(delx*sqla)+1.
        Np(ig,ng+ig)=(delx*sqla)**4/24.-(delx*sqla)**3/6.+(delx*sqla)**2/2.-(delx*sqla)+1.
      endif
    else if(Lambda_r >= 0) then
      Mm(ig,ig)=(sin(sqla*xp)-sin(sqla*xm))/(delx*sqla)
      Mm(ig,ng+ig)=-(cos(sqla*xp)-cos(sqla*xm))/(delx*sqla)
      Mm(ng+ig,ig)=sqla*sin(sqla*xm)
      Mm(ng+ig,ng+ig)=-sqla*cos(sqla*xm)
      Mp(ng+ig,ig)=sqla*sin(sqla*xp)
      Mp(ng+ig,ng+ig)=-sqla*cos(sqla*xp)
      Nm(ig,ig)=cos(sqla*xm)
      Nm(ig,ng+ig)=sin(sqla*xm)
      Np(ig,ig)=cos(sqla*xp)
      Np(ig,ng+ig)=sin(sqla*xp)
    else
      Mm(ig,ig)=exp(sqla*xm)*(exp(sqla*(xp-xm))-1.0d0)/(delx*sqla)
      Mm(ig,ng+ig)=-exp(-sqla*xm)*(exp(-sqla*(xp-xm))-1.0d0)/(delx*sqla)
      Mm(ng+ig,ig)=-sqla*exp(sqla*xm)
      Mm(ng+ig,ng+ig)=sqla*exp(-sqla*xm)
      Mp(ng+ig,ig)=-sqla*exp(sqla*xp)
      Mp(ng+ig,ng+ig)=sqla*exp(-sqla*xp)
      Nm(ig,ig)=exp(sqla*xm)
      Nm(ig,ng+ig)=exp(-sqla*xm)
      Np(ig,ig)=exp(sqla*xp)
      Np(ig,ng+ig)=exp(-sqla*xp)
    endif
    Mp(ig,ig)=Mm(ig,ig)
    Mp(ig,ng+ig)=Mm(ig,ng+ig)
  enddo
  !
  TI(:,:)=T_r(:,:)
  call ALINVD(2*ng,Mm,2*ng,ier)
  if(ier /= 0) call XABORT('NSSLR3: singular matrix.(4)')
  call ALINVD(2*ng,Mp,2*ng,ier)
  if(ier /= 0) call XABORT('NSSLR3: singular matrix.(5)')
  call ALINVD(ng,TI,ng,ier)
  if(ier /= 0) call XABORT('NSSLR3: singular matrix.(6)')
  !
  GAR1=matmul(Nm,Mm)  ! ng,2*ng
  GAR2=matmul(Np,Mp)  ! ng,2*ng
  S=matmul(TI,DI)     ! ng,ng
  !
  MAT1(:ng,:2*ng)=GAR1(:ng,:2*ng)
  MAT1(:ng,2*ng+1:5*ng)=-Um(:ng,:3*ng)/dely+matmul(GAR1(:ng,:2*ng),Vm(:2*ng,:3*ng))/dely
  MAT1(:ng,5*ng+1:8*ng)=Um(:ng,:3*ng)/dely-matmul(GAR1(:ng,:2*ng),Vm(:2*ng,:3*ng))/dely
  MAT1(:ng,8*ng+1:11*ng)=-Um(:ng,:3*ng)/delz+matmul(GAR1(:ng,:2*ng),Vm(:2*ng,:3*ng))/delz
  MAT1(:ng,11*ng+1:14*ng)=Um(:ng,:3*ng)/delz-matmul(GAR1(:ng,:2*ng),Vm(:2*ng,:3*ng))/delz
  MAT2(:ng,:2*ng)=GAR2(:ng,:2*ng)
  MAT2(:ng,2*ng+1:5*ng)=-Up(:ng,:3*ng)/dely+matmul(GAR2(:ng,:2*ng),Vp(:2*ng,:3*ng))/dely
  MAT2(:ng,5*ng+1:8*ng)=Up(:ng,:3*ng)/dely-matmul(GAR2(:ng,:2*ng),Vp(:2*ng,:3*ng))/dely
  MAT2(:ng,8*ng+1:11*ng)=-Up(:ng,:3*ng)/delz+matmul(GAR2(:ng,:2*ng),Vp(:2*ng,:3*ng))/delz
  MAT2(:ng,11*ng+1:14*ng)=Up(:ng,:3*ng)/delz-matmul(GAR2(:ng,:2*ng),Vp(:2*ng,:3*ng))/delz
  !
  GAR3=matmul(T_r,MAT1) ! ng,14*ng
  GAR4=matmul(T_r,MAT2) ! ng,14*ng
  L(:ng,:ng)=matmul(GAR3(:ng,:ng),TI(:ng,:ng))
  R(:ng,:ng)=matmul(GAR4(:ng,:ng),TI(:ng,:ng))
  allocate(S13(13*ng,13*ng))
  S13(:,:)=0.0d0 ! 13*ng,13*ng
  do i=1,13
    S13((i-1)*ng+1:i*ng,(i-1)*ng+1:i*ng)=S(:ng,:ng)
  enddo
  L(:ng,ng+1:14*ng)=matmul(GAR3(:ng,ng+1:14*ng),S13(:13*ng,:13*ng))
  R(:ng,ng+1:14*ng)=matmul(GAR4(:ng,ng+1:14*ng),S13(:13*ng,:13*ng))
  !----
  ! scratch storage deallocation
  !----
  deallocate(S13,MAT2,MAT1,Up,Um,Vp,Vm,GAR4,GAR3,GAR2,GAR1,Np,Nm,Mp,Mm,S, &
  & Lambda,DI,TI,T,T_r,F)
end subroutine NSSLR3