1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
|
subroutine NSSLR2(keff, ng, bndtl, xxx, dely, diff, sigr, scat, chi, nusigf, L, R)
!
!-----------------------------------------------------------------------
!
!Purpose:
! Compute the 2D ANM coupling matrices for a single node.
!
!Copyright:
! Copyright (C) 2023 Ecole Polytechnique de Montreal
! This library is free software; you can redistribute it and/or
! modify it under the terms of the GNU Lesser General Public
! License as published by the Free Software Foundation; either
! version 2.1 of the License, or (at your option) any later version
!
!Author(s): A. Hebert
!
!Parameters: input
! keff effective multiplication factor.
! ng number of energy groups.
! bndtl set to 'flat' or 'quadratic'.
! xxx node support along X-axis.
! dely node width along Y-axis.
! diff diffusion coefficient array (cm).
! sigr removal cross section array (cm-1).
! scat P0 scattering cross section matrix (cm^-1).
! chi fission spectrum array.
! nusigf nu*fission cross section array (cm^-1).
!
!Parameters: output
! L left nodal coupling matrix.
! R right nodal coupling matrix.
!
!-----------------------------------------------------------------------
!
!----
! subroutine arguments
!----
integer, intent(in) :: ng
real, intent(in) :: keff, xxx(4), dely
real, dimension(ng), intent(in) :: diff, sigr, chi, nusigf
real, dimension(ng,ng), intent(in) :: scat
character(len=12), intent(in) :: bndtl
real(kind=8), dimension(ng,8*ng), intent(out) :: L, R
!----
! local variables
!----
real(kind=8) :: m0(3,3),m2(3,3),m3(2,3),m4(1,3),Lambda_r,sqla,mmax2
!----
! allocatable arrays
!----
complex(kind=8), allocatable, dimension(:,:) :: T,Lambda
real(kind=8), allocatable, dimension(:,:) :: F,DI,T_r,TI,S,Mm,Mp,Nm,Np, &
& GAR1,GAR2,GAR3,GAR4,Vm,Vp,Um,Up,MAT1,MAT2,S7
!----
! scratch storage allocation
!----
allocate(F(ng,ng),T_r(ng,ng),T(ng,ng),TI(ng,ng),DI(ng,ng), &
& Lambda(ng,ng),S(ng,ng),Mm(2*ng,2*ng),Mp(2*ng,2*ng),Nm(ng,2*ng), &
& Np(ng,2*ng),GAR1(ng,2*ng),GAR2(ng,2*ng),GAR3(ng,8*ng), &
& GAR4(ng,8*ng),Vm(2*ng,3*ng),Vp(2*ng,3*ng),Um(ng,3*ng), &
& Up(ng,3*ng),MAT1(ng,8*ng),MAT2(ng,8*ng))
!
! quadratic leakage and boundary conditions
xmm=xxx(1) ; xm=xxx(2) ; xp=xxx(3) ; xpp=xxx(4) ; delx=xp-xm ;
if(xmm == -99999.) then
! Vacuum or zero flux node at left boundary
xmm=2.0*xm-xp
m0(:3,1)=1.0d0 ; m0(1,2)=(xmm+xm)/2.0d0 ; m0(1,3)=(xmm**2+xmm*xm+xm**2)/3.0d0
m0(2,2)=(xm+xp)/2.0d0 ; m0(2,3)=(xm**2+xm*xp+xp**2)/3.0d0
m0(3,2)=(xp+xpp)/2.0d0 ; m0(3,3)=(xp**2+xp*xpp+xpp**2)/3.0d0
call ALINVD(3,m0,3,ier)
if(ier /= 0) call XABORT('NSSLR2: singular matrix.(1)')
m0(:3,1)=0.0d0
elseif(xpp == -99999.) then
! Vacuum or zero flux node at right boundary
xpp=2.0*xp-xm
m0(:3,1)=1.0d0 ; m0(1,2)=(xmm+xm)/2.0d0 ; m0(1,3)=(xmm**2+xmm*xm+xm**2)/3.0d0
m0(2,2)=(xm+xp)/2.0d0 ; m0(2,3)=(xm**2+xm*xp+xp**2)/3.0d0
m0(3,2)=(xp+xpp)/2.0d0 ; m0(3,3)=(xp**2+xp*xpp+xpp**2)/3.0d0
call ALINVD(3,m0,3,ier)
if(ier /= 0) call XABORT('NSSLR2: singular matrix.(2)')
m0(:3,3)=0.0d0
else
! Internal node
m0(:3,1)=1.0d0 ; m0(1,2)=(xmm+xm)/2.0d0 ; m0(1,3)=(xmm**2+xmm*xm+xm**2)/3.0d0
m0(2,2)=(xm+xp)/2.0d0 ; m0(2,3)=(xm**2+xm*xp+xp**2)/3.0d0
m0(3,2)=(xp+xpp)/2.0d0 ; m0(3,3)=(xp**2+xp*xpp+xpp**2)/3.0d0
call ALINVD(3,m0,3,ier)
if(ier /= 0) call XABORT('NSSLR2: singular matrix.(3)')
endif
if(bndtl == 'flat') then
! flat leakage approximation
m0(:3,:3)=0.0d0 ; m0(1,2)=1.0d0
endif
!----
! compute matrices L and R
!----
Mm(:,:)=0.0d0
Mp(:,:)=0.0d0
Nm(:,:)=0.0d0
Np(:,:)=0.0d0
DI(:,:)=0.0d0
Vm(:,:)=0.0d0
Vp(:,:)=0.0d0
Um(:,:)=0.0d0
Up(:,:)=0.0d0
do ig=1,ng
do jg=1,ng
if(ig == jg) then
F(ig,ig)=(chi(ig)*nusigf(ig)/keff-sigr(ig))/diff(ig)
else
F(ig,jg)=(chi(ig)*nusigf(jg)/keff+scat(ig,jg))/diff(ig)
endif
enddo
DI(ig,ig)=1./diff(ig)
enddo
maxiter=40
call ALHQR(ng,ng,F,maxiter,iter,T,Lambda)
mmax2=0.0d0
do ig=1,ng
do jg=1,ng
mmax2=max(mmax2,abs(aimag(T(ig,jg))))
enddo
enddo
if(mmax2 > 1.0e-6) then
write(6,'(3h T=)')
do ig=1,ng
write(6,'(1p,12e12.4)') T(ig,:)
enddo
call XABORT('NSSLR2: complex eigenvalues.')
endif
T_r(:,:)=real(T(:,:),8)
do ig=1,ng
Lambda_r=real(Lambda(ig,ig),8)
sqla=sqrt(abs(Lambda_r))
m2(:3,:3)=0.0d0
m2(1,1)=1.0d0/Lambda_r ; m2(1,3)=-2.0d0/Lambda_r**2
m2(2,2)=1.0d0/Lambda_r ; m2(3,3)=1.0d0/Lambda_r
m2(:3,:3)=matmul(m2(:3,:3),m0(:3,:3))
m3(1,1)=1.0d0 ; m3(1,2)=(xm+xp)/2. ; m3(1,3)=(xm**2+xm*xp+xp**2)/3.0d0
m3(2,1)=0.0d0 ; m3(2,2)=-1.0d0 ; m3(2,3)=-2.0d0*xm
m3(:2,:3)=matmul(m3(:2,:3),m2(:3,:3))
Vm(ig,ig)=m3(1,1) ; Vm(ig,ng+ig)=m3(1,2) ; Vm(ig,2*ng+ig)=m3(1,3) ;
Vm(ng+ig,ig)=m3(2,1) ; Vm(ng+ig,ng+ig)=m3(2,2) ; Vm(ng+ig,2*ng+ig)=m3(2,3) ;
m3(1,1)=1.0d0 ; m3(1,2)=(xm+xp)/2.0d0 ; m3(1,3)=(xm**2+xm*xp+xp**2)/3.0d0
m3(2,1)=0.0d0 ; m3(2,2)=-1.0d0 ; m3(2,3)=-2.0d0*xp
m3(:2,:3)=matmul(m3(:2,:3),m2(:3,:3))
Vp(ig,ig)=m3(1,1) ; Vp(ig,ng+ig)=m3(1,2) ; Vp(ig,2*ng+ig)=m3(1,3) ;
Vp(ng+ig,ig)=m3(2,1) ; Vp(ng+ig,ng+ig)=m3(2,2) ; Vp(ng+ig,2*ng+ig)=m3(2,3) ;
m4(1,1)=1.0d0 ; m4(1,2)=xm ; m4(1,3)=xm**2
m4(:1,:3)=matmul(m4(:1,:3),m2(:3,:3))
Um(ig,ig)=m4(1,1) ; Um(ig,ng+ig)=m4(1,2) ; Um(ig,2*ng+ig)=m4(1,3) ;
m4(1,1)=1.0d0 ; m4(1,2)=xp ; m4(1,3)=xp**2
m4(:1,:3)=matmul(m4(:1,:3),m2(:3,:3))
Up(ig,ig)=m4(1,1) ; Up(ig,ng+ig)=m4(1,2) ; Up(ig,2*ng+ig)=m4(1,3) ;
if(delx*sqla < 1.e-6) then
if(Lambda_r >= 0) then
Mm(ig,ig)=-(delx*sqla)**6/5040.+(delx*sqla)**4/120.-(delx*sqla)**2/6.+1.
Mm(ig,ng+ig)=(delx*sqla)**5/720.-(delx*sqla)**3/24.+(delx*sqla)/2.
Mm(ng+ig,ng+ig)=-sqla
Mp(ng+ig,ig)=((delx*sqla)**6/120.-(delx*sqla)**4/6.+(delx*sqla)**2)/delx
Mp(ng+ig,ng+ig)=(-(delx*sqla)**5/24.+(delx*sqla)**3/2.-(delx*sqla))/delx
Nm(ig,ig)=1.
Np(ig,ig)=-(delx*sqla)**6/720.+(delx*sqla)**4/24.-(delx*sqla)**2/2.+1.
Np(ig,ng+ig)=(delx*sqla)**5/120.-(delx*sqla)**3/6.+(delx*sqla)
else
Mm(ig,ig)=(delx*sqla)**4/120.+(delx*sqla)**3/24.+(delx*sqla)**2/6.+(delx*sqla)/2. + 1.
Mm(ig,ng+ig)=-(delx*sqla)**3/24.+(delx*sqla)**2/6.-(delx*sqla)/2. + 1.
Mm(ng+ig,ig)=-sqla ; Mm(ng+ig,ng+ig)=sqla ;
Mp(ng+ig,ig)=(-(delx*sqla)**4/6.-(delx*sqla)**3/2.-(delx*sqla)**2-(delx*sqla))/delx
Mp(ng+ig,ng+ig)=(-(delx*sqla)**4/6+(delx*sqla)**3/2.-(delx*sqla)**2+(delx*sqla))/delx
Nm(ig,ig)=1. ; Nm(ig,ng+ig)=1. ;
Np(ig,ig)=(delx*sqla)**4/24.+(delx*sqla)**3/6.+(delx*sqla)**2/2.+(delx*sqla)+1.
Np(ig,ng+ig)=(delx*sqla)**4/24.-(delx*sqla)**3/6.+(delx*sqla)**2/2.-(delx*sqla)+1.
endif
else if(Lambda_r >= 0) then
Mm(ig,ig)=(sin(sqla*xp)-sin(sqla*xm))/(delx*sqla)
Mm(ig,ng+ig)=-(cos(sqla*xp)-cos(sqla*xm))/(delx*sqla)
Mm(ng+ig,ig)=sqla*sin(sqla*xm)
Mm(ng+ig,ng+ig)=-sqla*cos(sqla*xm)
Mp(ng+ig,ig)=sqla*sin(sqla*xp)
Mp(ng+ig,ng+ig)=-sqla*cos(sqla*xp)
Nm(ig,ig)=cos(sqla*xm)
Nm(ig,ng+ig)=sin(sqla*xm)
Np(ig,ig)=cos(sqla*xp)
Np(ig,ng+ig)=sin(sqla*xp)
else
Mm(ig,ig)=exp(sqla*xm)*(exp(sqla*(xp-xm))-1.0d0)/(delx*sqla)
Mm(ig,ng+ig)=-exp(-sqla*xm)*(exp(-sqla*(xp-xm))-1.0d0)/(delx*sqla)
Mm(ng+ig,ig)=-sqla*exp(sqla*xm)
Mm(ng+ig,ng+ig)=sqla*exp(-sqla*xm)
Mp(ng+ig,ig)=-sqla*exp(sqla*xp)
Mp(ng+ig,ng+ig)=sqla*exp(-sqla*xp)
Nm(ig,ig)=exp(sqla*xm)
Nm(ig,ng+ig)=exp(-sqla*xm)
Np(ig,ig)=exp(sqla*xp)
Np(ig,ng+ig)=exp(-sqla*xp)
endif
Mp(ig,ig)=Mm(ig,ig)
Mp(ig,ng+ig)=Mm(ig,ng+ig)
enddo
!
TI(:,:)=T_r(:,:)
call ALINVD(2*ng,Mm,2*ng,ier)
if(ier /= 0) call XABORT('NSSLR2: singular matrix.(4)')
call ALINVD(2*ng,Mp,2*ng,ier)
if(ier /= 0) call XABORT('NSSLR2: singular matrix.(5)')
call ALINVD(ng,TI,ng,ier)
if(ier /= 0) call XABORT('NSSLR2: singular matrix.(6)')
!
GAR1=matmul(Nm,Mm) ! ng,2*ng
GAR2=matmul(Np,Mp) ! ng,2*ng
S=matmul(TI,DI) ! ng,ng
!
MAT1(:ng,:2*ng)=GAR1(:ng,:2*ng)
MAT1(:ng,2*ng+1:5*ng)=-Um(:ng,:3*ng)/dely+matmul(GAR1(:ng,:2*ng),Vm(:2*ng,:3*ng))/dely
MAT1(:ng,5*ng+1:8*ng)=Um(:ng,:3*ng)/dely-matmul(GAR1(:ng,:2*ng),Vm(:2*ng,:3*ng))/dely
MAT2(:ng,:2*ng)=GAR2(:ng,:2*ng)
MAT2(:ng,2*ng+1:5*ng)=-Up(:ng,:3*ng)/dely+matmul(GAR2(:ng,:2*ng),Vp(:2*ng,:3*ng))/dely
MAT2(:ng,5*ng+1:8*ng)=Up(:ng,:3*ng)/dely-matmul(GAR2(:ng,:2*ng),Vp(:2*ng,:3*ng))/dely
!
GAR3=matmul(T_r,MAT1) ! ng,8*ng
GAR4=matmul(T_r,MAT2) ! ng,8*ng
L(:ng,:ng)=matmul(GAR3(:ng,:ng),TI(:ng,:ng))
R(:ng,:ng)=matmul(GAR4(:ng,:ng),TI(:ng,:ng))
allocate(S7(7*ng,7*ng))
S7(:,:)=0.0d0 ! 7*ng,7*ng
do i=1,7
S7((i-1)*ng+1:i*ng,(i-1)*ng+1:i*ng)=S(:ng,:ng)
enddo
L(:ng,ng+1:8*ng)=matmul(GAR3(:ng,ng+1:8*ng),S7(:7*ng,:7*ng))
R(:ng,ng+1:8*ng)=matmul(GAR4(:ng,ng+1:8*ng),S7(:7*ng,:7*ng))
!----
! scratch storage deallocation
!----
deallocate(S7,MAT2,MAT1,Up,Um,Vp,Vm,GAR4,GAR3,GAR2,GAR1,Np,Nm,Mp,Mm,S, &
& Lambda,DI,TI,T,T_r,F)
end subroutine NSSLR2
|