1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
|
subroutine NSSLR1(keff, ng, delx, diff, sigr, scat, chi, nusigf, L, R)
!
!-----------------------------------------------------------------------
!
!Purpose:
! Compute the 1D ANM coupling matrices for a single node.
!
!Copyright:
! Copyright (C) 2022 Ecole Polytechnique de Montreal
! This library is free software; you can redistribute it and/or
! modify it under the terms of the GNU Lesser General Public
! License as published by the Free Software Foundation; either
! version 2.1 of the License, or (at your option) any later version
!
!Author(s): A. Hebert
!
!Parameters: input
! keff effective multiplication factor.
! ng number of energy groups.
! delx node width along X-axis.
! diff diffusion coefficient array (cm).
! sigr removal cross section array (cm^-1).
! scat P0 scattering cross section matrix (cm^-1).
! chi fission spectrum array.
! nusigf nu*fission cross section array (cm^-1).
!
!Parameters: output
! L left nodal coupling matrix.
! R right nodal coupling matrix.
!
!-----------------------------------------------------------------------
!
!----
! subroutine arguments
!----
integer, intent(in) :: ng
real, intent(in) :: keff,delx
real, dimension(ng), intent(in) :: diff, sigr, chi, nusigf
real, dimension(ng,ng), intent(in) :: scat
real(kind=8), dimension(ng,2*ng), intent(out) :: L,R
!----
! local variables
!----
real(kind=8) :: Lambda_r,sqla,mmax2
!----
! allocatable arrays
!----
complex(kind=8), allocatable, dimension(:,:) :: T,Lambda
real(kind=8), allocatable, dimension(:,:) :: F,DI,T_r,TI,S,Mm, &
& Mp,Nm,Np,GAR1,GAR2
!----
! scratch storage allocation
!----
allocate(F(ng,ng),T_r(ng,ng),T(ng,ng),TI(ng,ng),DI(ng,ng), &
& Lambda(ng,ng),S(ng,ng),Mm(2*ng,2*ng),Mp(2*ng,2*ng), &
& Nm(ng,2*ng),Np(ng,2*ng),GAR1(ng,2*ng),GAR2(ng,2*ng))
!----
! compute matrices L and R
!----
Mm(:,:)=0.0d0
Mp(:,:)=0.0d0
Nm(:,:)=0.0d0
Np(:,:)=0.0d0
DI(:,:)=0.0d0
xm=0.0 ; xp=delx
do ig=1,ng
do jg=1,ng
if(ig == jg) then
F(ig,ig)=(chi(ig)*nusigf(ig)/keff-sigr(ig))/diff(ig)
else
F(ig,jg)=(chi(ig)*nusigf(jg)/keff+scat(ig,jg))/diff(ig)
endif
enddo
DI(ig,ig)=1.d0/diff(ig)
enddo
maxiter=40
call ALHQR(ng,ng,F,maxiter,iter,T,Lambda)
mmax2=0.0d0
do ig=1,ng
do jg=1,ng
mmax2=max(mmax2,abs(aimag(T(ig,jg))))
enddo
enddo
if(mmax2 > 1.0e-6) then
write(6,'(3h T=)')
do ig=1,ng
write(6,'(1p,12e12.4)') T(ig,:)
enddo
call XABORT('NSSLR1: complex eigenvalues.')
endif
T_r(:,:)=real(T(:,:),8)
do ig=1,ng
Lambda_r=real(Lambda(ig,ig),8)
sqla=sqrt(abs(Lambda_r))
if(delx*sqla < 1.e-6) then
if(Lambda_r >= 0) then
Mm(ig,ig)=-(delx*sqla)**6/5040.+(delx*sqla)**4/120.-(delx*sqla)**2/6.+1.
Mm(ig,ng+ig)=(delx*sqla)**5/720.-(delx*sqla)**3/24.+(delx*sqla)/2.
Mm(ng+ig,ng+ig)=-sqla
Mp(ng+ig,ig)=((delx*sqla)**6/120.-(delx*sqla)**4/6.+(delx*sqla)**2)/delx
Mp(ng+ig,ng+ig)=(-(delx*sqla)**5/24.+(delx*sqla)**3/2.-(delx*sqla))/delx
Nm(ig,ig)=1.
Np(ig,ig)=-(delx*sqla)**6/720.+(delx*sqla)**4/24.-(delx*sqla)**2/2.+1.
Np(ig,ng+ig)=(delx*sqla)**5/120.-(delx*sqla)**3/6.+(delx*sqla)
else
Mm(ig,ig)=(delx*sqla)**4/120.+(delx*sqla)**3/24.+(delx*sqla)**2/6.+(delx*sqla)/2. + 1.
Mm(ig,ng+ig)=-(delx*sqla)**3/24.+(delx*sqla)**2/6.-(delx*sqla)/2. + 1.
Mm(ng+ig,ig)=-sqla ; Mm(ng+ig,ng+ig)=sqla ;
Mp(ng+ig,ig)=(-(delx*sqla)**4/6.-(delx*sqla)**3/2.-(delx*sqla)**2-(delx*sqla))/delx
Mp(ng+ig,ng+ig)=(-(delx*sqla)**4/6+(delx*sqla)**3/2.-(delx*sqla)**2+(delx*sqla))/delx
Nm(ig,ig)=1. ; Nm(ig,ng+ig)=1. ;
Np(ig,ig)=(delx*sqla)**4/24.+(delx*sqla)**3/6.+(delx*sqla)**2/2.+(delx*sqla)+1.
Np(ig,ng+ig)=(delx*sqla)**4/24.-(delx*sqla)**3/6.+(delx*sqla)**2/2.-(delx*sqla)+1.
endif
else if(Lambda_r >= 0) then
Mm(ig,ig)=(sin(sqla*xp)-sin(sqla*xm))/(delx*sqla)
Mm(ig,ng+ig)=-(cos(sqla*xp)-cos(sqla*xm))/(delx*sqla)
Mm(ng+ig,ig)=sqla*sin(sqla*xm)
Mm(ng+ig,ng+ig)=-sqla*cos(sqla*xm)
Mp(ng+ig,ig)=sqla*sin(sqla*xp)
Mp(ng+ig,ng+ig)=-sqla*cos(sqla*xp)
Nm(ig,ig)=cos(sqla*xm)
Nm(ig,ng+ig)=sin(sqla*xm)
Np(ig,ig)=cos(sqla*xp)
Np(ig,ng+ig)=sin(sqla*xp)
else
Mm(ig,ig)=exp(sqla*xm)*(exp(sqla*(xp-xm))-1.0d0)/(delx*sqla)
Mm(ig,ng+ig)=-exp(-sqla*xm)*(exp(-sqla*(xp-xm))-1.0d0)/(delx*sqla)
Mm(ng+ig,ig)=-sqla*exp(sqla*xm)
Mm(ng+ig,ng+ig)=sqla*exp(-sqla*xm)
Mp(ng+ig,ig)=-sqla*exp(sqla*xp)
Mp(ng+ig,ng+ig)=sqla*exp(-sqla*xp)
Nm(ig,ig)=exp(sqla*xm)
Nm(ig,ng+ig)=exp(-sqla*xm)
Np(ig,ig)=exp(sqla*xp)
Np(ig,ng+ig)=exp(-sqla*xp)
endif
Mp(ig,ig)=Mm(ig,ig)
Mp(ig,ng+ig)=Mm(ig,ng+ig)
enddo
!
TI(:,:)=T_r(:,:)
call ALINVD(2*ng,Mm,2*ng,ier)
if(ier /= 0) call XABORT('NSSLR1: singular matrix.(1)')
call ALINVD(2*ng,Mp,2*ng,ier)
if(ier /= 0) call XABORT('NSSLR1: singular matrix.(2)')
call ALINVD(ng,TI,ng,ier)
if(ier /= 0) call XABORT('NSSLR1: singular matrix.(3)')
!
GAR1=matmul(Nm,Mm) ! ng,2*ng
GAR2=matmul(Np,Mp) ! ng,2*ng
S=matmul(TI,DI) ! ng,ng
GAR1=matmul(T_r,GAR1) ! ng,2*ng
GAR2=matmul(T_r,GAR2) ! ng,2*ng
!
L(:ng,:ng)=matmul(GAR1(:ng,:ng),TI(:ng,:ng))
L(:ng,ng+1:2*ng)=matmul(GAR1(:ng,ng+1:2*ng),S(:ng,:ng))
R(:ng,:ng)=matmul(GAR2(:ng,:ng),TI(:ng,:ng))
R(:ng,ng+1:2*ng)=matmul(GAR2(:ng,ng+1:2*ng),S(:ng,:ng))
!----
! scratch storage deallocation
!----
deallocate(GAR2,GAR1,Np,Nm,Mp,Mm,S,Lambda,DI,TI,T,T_r,F)
end subroutine NSSLR1
|