1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
|
*DECK NSSFL5
SUBROUTINE NSSFL5(IPFLX,NUN,NG,NX,NY,NZ,LL4F,LL4X,LL4Y,LL4Z,NMIX,
> NALB,ICL1,ICL2,NADI,EPSNOD,MAXNOD,EPSTHR,MAXTHR,EPSOUT,MAXOUT,
> MAT,XX,YY,ZZ,XXX,YYY,ZZZ,IDL,VOL,KN,IQFR,QFR,DIFF,SIGR,CHI,SIGF,
> SCAT,BETA,FD,BNDTL,NPASS,MUX,MUY,MUZ,IMAX,IMAY,IMAZ,IPY,IPZ,IMPX)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Flux calculation for the analytic nodal method in Cartesian 3D
* geometry using the nodal correction iteration strategy.
*
*Copyright:
* Copyright (C) 2022 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IPFLX nodal flux.
* NUN number of unknowns per energy group.
* NG number of energy groups.
* NX number of nodes in the X direction.
* NY number of nodes in the Y direction.
* NZ number of nodes in the Z direction.
* LL4F number of nodal flux unknowns.
* LL4X number of nodal X-directed net currents unknowns.
* LL4Y number of nodal Y-directed net currents unknowns.
* LL4Z number of nodal Z-directed net currents unknowns.
* NMIX number of mixtures in the nodal calculation.
* NALB number of physical albedos.
* ICL1 number of free iterations in one cycle of the inverse power
* method (used for thermal iterations).
* ICL2 number of accelerated iterations in one cycle.
* NADI number of inner ADI iterations.
* EPSNOD nodal correction epsilon.
* MAXNOD maximum number of nodal correction iterations.
* EPSTHR thermal iteration epsilon.
* MAXTHR maximum number of thermal iterations.
* EPSOUT convergence epsilon for the power method.
* MAXOUT maximum number of iterations for the power method.
* MAT material mixtures.
* XX mesh spacings in the X direction.
* YY mesh spacings in the Y direction.
* ZZ mesh spacings in the Z direction.
* XXX Cartesian coordinates along the X axis.
* YYY Cartesian coordinates along the Y axis.
* ZZZ Cartesian coordinates along the Z axis.
* IDL position of averaged fluxes in unknown vector.
* VOL node volumes.
* KN node-ordered interface net current unknown list.
* IQFR boundary condition information.
* QFR albedo function information.
* DIFF diffusion coefficients
* SIGR removal cross sections.
* CHI fission spectra.
* SIGF nu times fission cross section.
* SCAT scattering cross section.
* BETA albedos.
* FD discontinuity factors.
* BNDTL set to 'flat' or 'quadratic'.
* NPASS number of transverse current iterations.
* MUX X-oriented compressed storage mode indices.
* MUY Y-oriented compressed storage mode indices.
* MUZ Z-oriented compressed storage mode indices.
* IMAX X-oriented position of each first non-zero column element.
* IMAY Y-oriented position of each first non-zero column element.
* IMAZ Z-oriented position of each first non-zero column element.
* IPY Y-oriented permutation matrices.
* IPZ Z-oriented permutation matrices.
* IMPX edition flag.
*
*-----------------------------------------------------------------------
*
USE GANLIB
*----
* SUBROUTINE ARGUMENTS
*----
TYPE(C_PTR) IPFLX
INTEGER NUN,NG,NX,NY,LL4F,LL4X,LL4Y,NMIX,NALB,ICL1,ICL2,
1 NADI,MAXNOD,MAXTHR,MAXOUT,IMPX,MAT(NX*NY*NZ),IDL(NX*NY*NZ),
2 KN(6,NX,NY,NZ),IQFR(6,NX,NY,NZ),NPASS,MUX(LL4F),MUY(LL4F),
3 MUZ(LL4F),IMAX(LL4F),IMAY(LL4F),IMAZ(LL4F),IPY(LL4F),IPZ(LL4F)
REAL EPSNOD,EPSTHR,EPSOUT,XX(NX*NY*NZ),YY(NX*NY*NZ),ZZ(NX*NY*NZ),
1 XXX(NX+1),YYY(NY+1),ZZZ(NZ+1),VOL(NX*NY*NZ),QFR(6,NX*NY*NZ),
2 DIFF(NMIX,NG),SIGR(NMIX,NG),CHI(NMIX,NG),SIGF(NMIX,NG),
3 SCAT(NMIX,NG,NG),BETA(NALB,NG,NG),FD(NMIX,6,NG,NG)
CHARACTER(LEN=12) :: BNDTL
*----
* LOCAL VARIABLES
*----
TYPE(C_PTR) JPFLX
INTEGER, PARAMETER :: NDIM=3
REAL :: COEF(6),KEFF,KEFF_OLD
*----
* ALLOCATABLE ARRAYS
*----
REAL, ALLOCATABLE, DIMENSION(:) :: EVECT
REAL, ALLOCATABLE, DIMENSION(:,:) :: A11X,A11Y,A11Z
REAL, ALLOCATABLE, DIMENSION(:,:,:) :: QFR2,DRIFT
REAL, POINTER, DIMENSION(:,:) :: SAVG
*
ALB(X)=0.5*(1.0-X)/(1.0+X)
*----
* SCRATCH STORAGE ALLOCATION
*----
NEL=NX*NY*NZ
N=LL4F*NG
ALLOCATE(QFR2(6,NEL,NG),EVECT(N))
ALLOCATE(DRIFT(6,NEL,NG),SAVG(NUN,NG))
*----
* ALBEDO PROCESSING
*----
QFR2(:6,:NEL,:NG)=0.0
DO IG=1,NG
DO IQW=1,6
DO I=1,NX
DO J=1,NY
DO K=1,NZ
IEL=(K-1)*NX*NY+(J-1)*NX+I
IALB=IQFR(IQW,I,J,K)
IF(IALB > 0) THEN
IF(IALB.GT.NALB) CALL XABORT('NSSFL5: BETA OVERFLOW.')
QFR2(IQW,IEL,IG)=QFR(IQW,IEL)*ALB(BETA(IALB,IG,IG))
ELSE
QFR2(IQW,IEL,IG)=QFR(IQW,IEL)
ENDIF
ENDDO
ENDDO
ENDDO
ENDDO
ENDDO
*----
* INITIALIZATIONS
*----
KEFF_OLD=0.0
KEFF=1.0
CALL LCMLEN(IPFLX,'FLUX',ILONG,ITYLCM)
IF(ILONG == 0) THEN
JPFLX=LCMLID(IPFLX,'FLUX',NG)
SAVG(:NUN,:NG)=1.0
ELSE
JPFLX=LCMGID(IPFLX,'FLUX')
DO IG=1,NG
CALL LCMLEL(JPFLX,IG,ILONG,ITYLCM)
IF(ILONG /= NUN) CALL XABORT('NSSFL5: INVALID FLUX.')
CALL LCMGDL(JPFLX,IG,SAVG(1,IG))
ENDDO
CALL LCMGET(IPFLX,'K-EFFECTIVE',KEFF)
ENDIF
CALL LCMLEN(IPFLX,'DRIFT',ILONG,ITYLCM)
IF(ILONG == 0) THEN
JPFLX=LCMLID(IPFLX,'DRIFT',6*NEL)
DRIFT(:6,:NEL,:NG)=0.0
ELSE
JPFLX=LCMGID(IPFLX,'DRIFT')
DO IG=1,NG
CALL LCMLEL(JPFLX,IG,ILONG,ITYLCM)
IF(ILONG /= 6*NEL) CALL XABORT('NSSFL5: INVALID DRIFT.')
CALL LCMGDL(JPFLX,IG,DRIFT(1,1,IG))
ENDDO
ENDIF
DO IND1=1,LL4F
DO IG=1,NG
EVECT((IG-1)*LL4F+IND1)=SAVG(IND1,IG)
ENDDO
ENDDO
*----
* NODAL CORRECTION LOOP
*----
NMAX=IMAX(LL4F)
NMAY=IMAY(LL4F)
NMAZ=IMAZ(LL4F)
ALLOCATE(A11X(NMAX,NG),A11Y(NMAY,NG),A11Z(NMAZ,NG))
JTER=0
SAVG(:NUN,:NG)=0.0
IOFY=7*LL4F+LL4X
IOFZ=7*LL4F+LL4X+LL4Y
DO WHILE((ABS(KEFF_OLD-KEFF) >= EPSNOD).OR.(JTER==0))
JTER=JTER+1
IF(IMPX > 0) THEN
WRITE(6,'(36H NSSFL5: Nodal correction iteration=,I5)')
> JTER
ENDIF
IF(JTER > MAXNOD) THEN
WRITE(6,'(/22H ACCURACY AT ITERATION,I4,2H =,1P,E12.5)')
> JTER,ABS(KEFF_OLD-KEFF)
CALL XABORT('NSSFL5: NODAL ITERATION FAILURE')
ENDIF
!
! set CMFD matrices
IOF=0
DO IG=1,NG
CALL NSSMXYZ(LL4F,NDIM,NX,NY,NZ,NMIX,MAT,XX,YY,ZZ,IDL,VOL,
> IQFR,QFR2(1,1,IG),DIFF(1,IG),DRIFT(1,1,IG),SIGR(1,IG),
> MUX,MUY,MUZ,IMAX,IMAY,IMAZ,IPY,IPZ,A11X(1,IG),A11Y(1,IG),
> A11Z(1,IG))
ENDDO
!
! CMFD power iteration
DELTA=ABS(KEFF_OLD-KEFF)
KEFF_OLD=KEFF
CALL NSSEIG(NMAX,NMAY,NMAZ,LL4F,NDIM,NEL,NMIX,NG,MAT,IDL,VOL,
> MUX,MUY,MUZ,IMAX,IMAY,IMAZ,IPY,IPZ,CHI,SIGF,SCAT,A11X,A11Y,A11Z,
> EPSTHR,MAXTHR,NADI,EPSOUT,MAXOUT,ICL1,ICL2,ITER,EVECT,KEFF,IMPX)
IF(IMPX > 0) WRITE(6,10) JTER,KEFF,ITER,DELTA
IF(IMPX > 2) THEN
WRITE(6,'(1X,A)') 'NSSFL5: EVECT='
IOF=0
DO IG=1,NG
WRITE(6,'(1X,1P,14E12.4)') EVECT(IOF+1:IOF+LL4F)
IOF=IOF+LL4F
ENDDO
ENDIF
!
! begin construct SAVG
IF(NUN /= IOFZ+LL4Z) CALL XABORT('NSSFL5: INVALID NUN.')
DO IEL=1,LL4F
DO IG=1,NG
SAVG(IEL,IG)=EVECT((IG-1)*LL4F+IEL)
ENDDO
ENDDO
!
! one- and two-node anm relations
CALL NSSANM3(NUN,NX,NY,NZ,LL4F,LL4X,LL4Y,NG,BNDTL,NPASS,NMIX,
> IDL,KN,IQFR,QFR2,MAT,XXX,YYY,ZZZ,KEFF,DIFF,SIGR,CHI,SIGF,SCAT,
> FD,SAVG)
!
! compute new drift coefficients
DRIFT(:6,:NEL,:NG)=0.0
DO IG=1,NG
DO K=1,NZ
DO J=1,NY
DO I=1,NX
IEL=(K-1)*NX*NY+(J-1)*NX+I
IND1=IDL(IEL)
IF(IND1 == 0) CYCLE
KK1=IQFR(1,I,J,K)
KK2=IQFR(2,I,J,K)
JXM=KN(1,I,J,K) ; JXP=KN(2,I,J,K)
JYM=KN(3,I,J,K) ; JYP=KN(4,I,J,K)
JZM=KN(5,I,J,K) ; JZP=KN(6,I,J,K)
CALL NSSCO(NX,NY,NZ,NMIX,I,J,K,MAT,XX,YY,ZZ,DIFF(1,IG),
> IQFR(1,I,J,K),QFR2(1,IEL,IG),COEF)
IF((KK1 < 0) .AND. (KK2 < 0)) THEN
DRIFT(1,IEL,IG)=-(SAVG(7*LL4F+JXM,IG)+COEF(1)*
> SAVG(IND1,IG))/SAVG(IND1,IG)
DRIFT(2,IEL,IG)=-(SAVG(7*LL4F+JXP,IG)-COEF(2)*
> SAVG(IND1,IG))/SAVG(IND1,IG)
ELSE IF(KK1 < 0) THEN
DRIFT(1,IEL,IG)=-(SAVG(7*LL4F+JXM,IG)+COEF(1)*
> SAVG(IND1,IG))/SAVG(IND1,IG)
IND3=IDL((K-1)*NX*NY+(J-1)*NX+I+1)
IF(IND3 /= 0) DRIFT(2,IEL,IG)=-(SAVG(7*LL4F+JXP,IG)+
> COEF(2)*(SAVG(IND3,IG)-SAVG(IND1,IG)))/(SAVG(IND3,IG)+
> SAVG(IND1,IG))
ELSE IF(KK2 < 0) THEN
IND2=IDL((K-1)*NX*NY+(J-1)*NX+I-1)
IF(IND2 /= 0) DRIFT(1,IEL,IG)=-(SAVG(7*LL4F+JXM,IG)+
> COEF(1)*(SAVG(IND1,IG)-SAVG(IND2,IG)))/(SAVG(IND1,IG)+
> SAVG(IND2,IG))
DRIFT(2,IEL,IG)=-(SAVG(7*LL4F+JXP,IG)-COEF(2)*
> SAVG(IND1,IG))/SAVG(IND1,IG)
ELSE
IND2=IDL((K-1)*NX*NY+(J-1)*NX+I-1)
IND3=IDL((K-1)*NX*NY+(J-1)*NX+I+1)
IF(IND2 /= 0) DRIFT(1,IEL,IG)=-(SAVG(7*LL4F+JXM,IG)+
> COEF(1)*(SAVG(IND1,IG)-SAVG(IND2,IG)))/(SAVG(IND1,IG)+
> SAVG(IND2,IG))
IF(IND3 /= 0) DRIFT(2,IEL,IG)=-(SAVG(7*LL4F+JXP,IG)+
> COEF(2)*(SAVG(IND3,IG)-SAVG(IND1,IG)))/(SAVG(IND3,IG)+
> SAVG(IND1,IG))
ENDIF
KK3=IQFR(3,I,J,K)
KK4=IQFR(4,I,J,K)
IF((KK3 < 0).AND.(KK4 < 0)) THEN
DRIFT(3,IEL,IG)=-(SAVG(IOFY+JYM,IG)+COEF(3)*
> SAVG(IND1,IG))/SAVG(IND1,IG)
DRIFT(4,IEL,IG)=-(SAVG(IOFY+JYP,IG)-COEF(4)*
> SAVG(IND1,IG))/SAVG(IND1,IG)
ELSE IF(KK3 < 0) THEN
DRIFT(3,IEL,IG)=-(SAVG(IOFY+JYM,IG)+COEF(3)*
> SAVG(IND1,IG))/SAVG(IND1,IG)
IND3=IDL((K-1)*NX*NY+J*NX+I)
IF(IND3 /= 0) DRIFT(4,IEL,IG)=-(SAVG(IOFY+JYP,IG)+
> COEF(4)*(SAVG(IND3,IG)-SAVG(IND1,IG)))/(SAVG(IND3,IG)+
> SAVG(IND1,IG))
ELSE IF(KK4 < 0) THEN
IND2=IDL((K-1)*NX*NY+(J-2)*NX+I)
IF(IND2 /= 0) DRIFT(3,IEL,IG)=-(SAVG(IOFY+JYM,IG)+
> COEF(3)*(SAVG(IND1,IG)-SAVG(IND2,IG)))/(SAVG(IND1,IG)+
> SAVG(IND2,IG))
DRIFT(4,IEL,IG)=-(SAVG(IOFY+JYP,IG)-COEF(4)*
> SAVG(IND1,IG))/SAVG(IND1,IG)
ELSE
IND2=IDL((K-1)*NX*NY+(J-2)*NX+I)
IND3=IDL((K-1)*NX*NY+J*NX+I)
IF(IND2 /= 0) DRIFT(3,IEL,IG)=-(SAVG(IOFY+JYM,IG)+
> COEF(3)*(SAVG(IND1,IG)-SAVG(IND2,IG)))/(SAVG(IND1,IG)+
> SAVG(IND2,IG))
IF(IND3 /= 0) DRIFT(4,IEL,IG)=-(SAVG(IOFY+JYP,IG)+
> COEF(4)*(SAVG(IND3,IG)-SAVG(IND1,IG)))/(SAVG(IND3,IG)+
> SAVG(IND1,IG))
ENDIF
KK5=IQFR(5,I,J,K)
KK6=IQFR(6,I,J,K)
IF((KK5 < 0).AND.(KK6 < 0)) THEN
DRIFT(5,IEL,IG)=-(SAVG(IOFZ+JZM,IG)+COEF(5)*
> SAVG(IND1,IG))/SAVG(IND1,IG)
DRIFT(6,IEL,IG)=-(SAVG(IOFZ+JZP,IG)-COEF(6)*
> SAVG(IND1,IG))/SAVG(IND1,IG)
ELSE IF(KK5 < 0) THEN
DRIFT(5,IEL,IG)=-(SAVG(IOFZ+JZM,IG)+COEF(5)*
> SAVG(IND1,IG))/SAVG(IND1,IG)
IND3=IDL(K*NX*NY+(J-1)*NX+I)
IF(IND3 /= 0) DRIFT(6,IEL,IG)=-(SAVG(IOFZ+JZP,IG)+
> COEF(6)*(SAVG(IND3,IG)-SAVG(IND1,IG)))/(SAVG(IND3,IG)+
> SAVG(IND1,IG))
ELSE IF(KK6 < 0) THEN
IND2=IDL((K-2)*NX*NY+(J-1)*NX+I)
IF(IND2 /= 0) DRIFT(5,IEL,IG)=-(SAVG(IOFZ+JZM,IG)+
> COEF(5)*(SAVG(IND1,IG)-SAVG(IND2,IG)))/(SAVG(IND1,IG)+
> SAVG(IND2,IG))
DRIFT(6,IEL,IG)=-(SAVG(IOFZ+JZP,IG)-COEF(6)*
> SAVG(IND1,IG))/SAVG(IND1,IG)
ELSE
IND2=IDL((K-2)*NX*NY+(J-1)*NX+I)
IND3=IDL(K*NX*NY+(J-1)*NX+I)
IF(IND2 /= 0) DRIFT(5,IEL,IG)=-(SAVG(IOFZ+JZM,IG)+
> COEF(5)*(SAVG(IND1,IG)-SAVG(IND2,IG)))/(SAVG(IND1,IG)+
> SAVG(IND2,IG))
IF(IND3 /= 0) DRIFT(6,IEL,IG)=-(SAVG(IOFZ+JZP,IG)+
> COEF(6)*(SAVG(IND3,IG)-SAVG(IND1,IG)))/(SAVG(IND3,IG)+
> SAVG(IND1,IG))
ENDIF
ENDDO
ENDDO
ENDDO
ENDDO
IF(IMPX > 5) THEN
DO IG=1,NG
WRITE(6,'(28H NSSFL5: DRIFT COEFFICIENTS(,I5,2H):)') IG
DO IEL=1,NX*NY*NZ
WRITE(6,'(1P,I7,6E12.4)') IEL,DRIFT(:6,IEL,IG)
ENDDO
ENDDO
ENDIF
ENDDO
DEALLOCATE(A11Z,A11Y,A11X)
*----
* END OF NODAL CORRECTION LOOP
*----
IF(IMPX.GT.0) WRITE(6,20) KEFF,JTER
IF(IMPX > 2) THEN
WRITE(6,'(/21H NSSFL5: UNKNOWNS----)')
DO IG=1,NG
WRITE(6,'(14H NSSFL5: SAVG(,I4,2H)=)') IG
WRITE(6,'(1P,12E12.4)') SAVG(:LL4F,IG)
WRITE(6,'(19H X-BOUNDARY FLUXES:)')
WRITE(6,'(1P,12E12.4)') SAVG(LL4F+1:2*LL4F,IG)
WRITE(6,'(1P,12E12.4)') SAVG(2*LL4F+1:3*LL4F,IG)
WRITE(6,'(19H Y-BOUNDARY FLUXES:)')
WRITE(6,'(1P,12E12.4)') SAVG(3*LL4F+1:4*LL4F,IG)
WRITE(6,'(1P,12E12.4)') SAVG(4*LL4F+1:5*LL4F,IG)
WRITE(6,'(19H Z-BOUNDARY FLUXES:)')
WRITE(6,'(1P,12E12.4)') SAVG(5*LL4F+1:6*LL4F,IG)
WRITE(6,'(1P,12E12.4)') SAVG(6*LL4F+1:7*LL4F,IG)
WRITE(6,'(12H X-CURRENTS:)')
WRITE(6,'(1P,12E12.4)') SAVG(7*LL4F+1:IOFY,IG)
WRITE(6,'(12H Y-CURRENTS:)')
WRITE(6,'(1P,12E12.4)') SAVG(IOFY+1:IOFZ,IG)
WRITE(6,'(12H Z-CURRENTS:)')
WRITE(6,'(1P,12E12.4)') SAVG(IOFZ+1:NUN,IG)
WRITE(6,'(5H ----)')
ENDDO
ENDIF
*----
* SAVE SOLUTION
*----
JPFLX=LCMGID(IPFLX,'FLUX')
DO IG=1,NG
CALL LCMPDL(JPFLX,IG,NUN,2,SAVG(1,IG))
ENDDO
JPFLX=LCMGID(IPFLX,'DRIFT')
DO IG=1,NG
CALL LCMPDL(JPFLX,IG,6*NEL,2,DRIFT(1,1,IG))
ENDDO
CALL LCMPUT(IPFLX,'K-EFFECTIVE',1,2,KEFF)
*----
* SCRATCH STORAGE DEALLOCATION
*----
DEALLOCATE(EVECT,QFR2)
DEALLOCATE(SAVG,DRIFT)
RETURN
*
10 FORMAT(14H NSSFL5: JTER=,I4,11H CMFD KEFF=,1P E13.6,
1 12H OBTAINED IN,I4,28H CMFD ITERATIONS WITH ERROR=,
2 1P,E11.4,1H.)
20 FORMAT(18H NSSFL5: ANM KEFF=,F11.8,12H OBTAINED IN,I5,
1 29H NODAL CORRECTION ITERATIONS.)
END
|