summaryrefslogtreecommitdiff
path: root/Trivac/src/NSSFL4.f
blob: bdf4e733f50f57b54d056270fbe1d79493dbb1f4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
*DECK NSSFL4
      SUBROUTINE NSSFL4(IPFLX,NUN,NG,NX,NY,LL4F,LL4X,LL4Y,NMIX,NALB,
     > ICL1,ICL2,NADI,EPSNOD,MAXNOD,EPSTHR,MAXTHR,EPSOUT,MAXOUT,MAT,
     > XX,YY,XXX,YYY,IDL,VOL,KN,IQFR,QFR,DIFF,SIGR,CHI,SIGF,SCAT,BETA,
     > FD,BNDTL,NPASS,MUX,MUY,IMAX,IMAY,IPY,IMPX)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Flux calculation for the analytic nodal method in Cartesian 2D
* geometry using the nodal correction iteration strategy.
*
*Copyright:
* Copyright (C) 2022 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IPFLX   nodal flux.
* NUN     number of unknowns per energy group.
* NG      number of energy groups.
* NX      number of nodes in the X direction.
* NY      number of nodes in the Y direction.
* LL4F    number of nodal flux unknowns.
* LL4X    number of nodal X-directed net currents unknowns.
* LL4Y    number of nodal Y-directed net currents unknowns.
* NMIX    number of mixtures in the nodal calculation.
* NALB    number of physical albedos.
* ICL1    number of free iterations in one cycle of the inverse power
*         method (used for thermal iterations).
* ICL2    number of accelerated iterations in one cycle.
* NADI    number of inner ADI iterations.
* EPSNOD  nodal correction epsilon.
* MAXNOD  maximum number of nodal correction iterations.
* EPSTHR  thermal iteration epsilon.
* MAXTHR  maximum number of thermal iterations.
* EPSOUT  convergence epsilon for the power method.
* MAXOUT  maximum number of iterations for the power method.
* MAT     material mixtures.
* XX      mesh spacings in the X direction.
* YY      mesh spacings in the Y direction.
* XXX     Cartesian coordinates along the X axis.
* YYY     Cartesian coordinates along the Y axis.
* IDL     position of averaged fluxes in unknown vector.
* VOL     node volumes.
* KN      node-ordered interface net current unknown list.
* IQFR    boundary condition information.
* QFR     albedo function information.
* DIFF    diffusion coefficients
* SIGR    removal cross sections.
* CHI     fission spectra.
* SIGF    nu times fission cross section.
* SCAT    scattering cross section.
* BETA    albedos.
* FD      discontinuity factors.
* BNDTL   set to 'flat' or 'quadratic'.
* NPASS   number of transverse current iterations.
* MUX     X-oriented compressed storage mode indices.
* MUY     Y-oriented compressed storage mode indices.
* IMAX    X-oriented position of each first non-zero column element.
* IMAY    Y-oriented position of each first non-zero column element.
* IPY     Y-oriented permutation matrices.
* IMPX    edition flag.
*
*-----------------------------------------------------------------------
*
      USE GANLIB
*----
*  SUBROUTINE ARGUMENTS
*----
      TYPE(C_PTR) IPFLX
      INTEGER NUN,NG,NX,NY,LL4F,LL4X,LL4Y,NMIX,NALB,ICL1,ICL2,NADI,
     1 MAXNOD,MAXTHR,MAXOUT,IMPX,MAT(NX*NY),IDL(NX*NY),KN(6,NX,NY),
     2 NPASS,IQFR(6,NX,NY),MUX(LL4F),MUY(LL4F),IMAX(LL4F),IMAY(LL4F),
     3 IPY(LL4F)
      REAL EPSNOD,EPSTHR,EPSOUT,XX(NX*NY),YY(NX*NY),XXX(NX+1),YYY(NY+1),
     1 VOL(NX*NY),QFR(6,NX*NY),DIFF(NMIX,NG),SIGR(NMIX,NG),CHI(NMIX,NG),
     2 SIGF(NMIX,NG),SCAT(NMIX,NG,NG),BETA(NALB,NG,NG),FD(NMIX,4,NG,NG)
      CHARACTER(LEN=12) :: BNDTL
*----
*  LOCAL VARIABLES
*----
      TYPE(C_PTR) JPFLX
      INTEGER, PARAMETER :: NZ=1,NDIM=2
      INTEGER :: MUZ(1),IMAZ(1),IPZ(1)
      REAL :: COEF(6),KEFF,KEFF_OLD
*----
*  ALLOCATABLE ARRAYS
*----
      REAL, ALLOCATABLE, DIMENSION(:) :: ZZ,EVECT
      REAL, ALLOCATABLE, DIMENSION(:,:) :: A11X,A11Y,A11Z,SAVG
      REAL, ALLOCATABLE, DIMENSION(:,:,:) :: QFR2,DRIFT
*
      ALB(X)=0.5*(1.0-X)/(1.0+X)
*----
*  SCRATCH STORAGE ALLOCATION
*----
      NEL=NX*NY
      N=LL4F*NG
      ALLOCATE(QFR2(6,NEL,NG),ZZ(NEL),EVECT(N))
      ALLOCATE(DRIFT(6,NEL,NG),SAVG(NUN,NG))
*----
*  ALBEDO PROCESSING
*----
      QFR2(:6,:NEL,:NG)=0.0
      DO IG=1,NG
        DO IQW=1,4
          DO I=1,NX
            DO J=1,NY
              IEL=(J-1)*NX+I
              IALB=IQFR(IQW,I,J)
              IF(IALB > 0) THEN
                IF(IALB.GT.NALB) CALL XABORT('NSSFL4: BETA OVERFLOW.')
                QFR2(IQW,IEL,IG)=QFR(IQW,IEL)*ALB(BETA(IALB,IG,IG))
              ELSE
                QFR2(IQW,IEL,IG)=QFR(IQW,IEL)
              ENDIF
            ENDDO
          ENDDO
        ENDDO
      ENDDO
*----
*  INITIALIZATIONS
*----
      KEFF_OLD=0.0
      KEFF=1.0
      CALL LCMLEN(IPFLX,'FLUX',ILONG,ITYLCM)
      IF(ILONG == 0) THEN
        JPFLX=LCMLID(IPFLX,'FLUX',NG)
        SAVG(:NUN,:NG)=1.0
      ELSE
        JPFLX=LCMGID(IPFLX,'FLUX')
        DO IG=1,NG
          CALL LCMLEL(JPFLX,IG,ILONG,ITYLCM)
          IF(ILONG /= NUN) CALL XABORT('NSSFL4: INVALID FLUX.')
          CALL LCMGDL(JPFLX,IG,SAVG(1,IG))
        ENDDO
        CALL LCMGET(IPFLX,'K-EFFECTIVE',KEFF)
      ENDIF
      CALL LCMLEN(IPFLX,'DRIFT',ILONG,ITYLCM)
      IF(ILONG == 0) THEN
        JPFLX=LCMLID(IPFLX,'DRIFT',6*NEL)
        DRIFT(:6,:NEL,:NG)=0.0
      ELSE
        JPFLX=LCMGID(IPFLX,'DRIFT')
        DO IG=1,NG
          CALL LCMLEL(JPFLX,IG,ILONG,ITYLCM)
          IF(ILONG /= 6*NEL) CALL XABORT('NSSFL4: INVALID DRIFT.')
          CALL LCMGDL(JPFLX,IG,DRIFT(1,1,IG))
        ENDDO
      ENDIF
      DO IEL=1,LL4F
        DO IG=1,NG
          EVECT((IG-1)*LL4F+IEL)=SAVG(IEL,IG)
        ENDDO
      ENDDO
*----
*  NODAL CORRECTION LOOP
*----
      NMAX=IMAX(LL4F)
      NMAY=IMAY(LL4F)
      NMAZ=1
      ALLOCATE(A11X(NMAX,NG),A11Y(NMAY,NG),A11Z(NMAZ,NG))
      ZZ(:NEL)=1.0
      MUZ(1)=0
      IMAZ(1)=0
      IPZ(1)=0
      JTER=0
      SAVG(:NUN,:NG)=0.0
      IOFY=5*LL4F+LL4X
      DO WHILE((ABS(KEFF_OLD-KEFF) >= EPSNOD).OR.(JTER==0))
        JTER=JTER+1
        IF(IMPX.GT.0) THEN
          WRITE(6,'(36H NSSFL4: Nodal correction iteration=,I5)')
     >    JTER
        ENDIF
        IF(JTER > MAXNOD) THEN
          WRITE(6,'(/22H ACCURACY AT ITERATION,I4,2H =,1P,E12.5)')
     >    JTER,ABS(KEFF_OLD-KEFF)
          CALL XABORT('NSSFL4: NODAL ITERATION FAILURE')
        ENDIF
        !
        ! set coarse mesh finite difference matrix
        IOF=0
        DO IG=1,NG
          CALL NSSMXYZ(LL4F,NDIM,NX,NY,NZ,NMIX,MAT,XX,YY,ZZ,IDL,VOL,
     >    IQFR,QFR2(1,1,IG),DIFF(1,IG),DRIFT(1,1,IG),SIGR(1,IG),
     >    MUX,MUY,MUZ,IMAX,IMAY,IMAZ,IPY,IPZ,A11X(1,IG),A11Y(1,IG),
     >    A11Z(1,IG))
        ENDDO
        !
        ! CMFD power iteration
        DELTA=ABS(KEFF_OLD-KEFF)
        KEFF_OLD=KEFF
        CALL NSSEIG(NMAX,NMAY,NMAZ,LL4F,NDIM,NEL,NMIX,NG,MAT,IDL,VOL,
     >  MUX,MUY,MUZ,IMAX,IMAY,IMAZ,IPY,IPZ,CHI,SIGF,SCAT,A11X,A11Y,A11Z,
     >  EPSTHR,MAXTHR,NADI,EPSOUT,MAXOUT,ICL1,ICL2,ITER,EVECT,KEFF,IMPX)
        IF(IMPX > 0) WRITE(6,10) JTER,KEFF,ITER,DELTA
        IF(IMPX > 2) THEN
          WRITE(6,'(1X,A)') 'NSSFL4: EVECT='
          IOF=0
          DO IG=1,NG
            WRITE(6,'(1X,1P,14E12.4)') EVECT(IOF+1:IOF+LL4F)
            IOF=IOF+LL4F
          ENDDO
        ENDIF
        !
        ! begin construct SAVG
        IF(NUN /= IOFY+LL4Y) CALL XABORT('NSSFL4: INVALID NUN.')
        DO IND1=1,LL4F
          DO IG=1,NG
            SAVG(IND1,IG)=EVECT((IG-1)*LL4F+IND1)
          ENDDO
        ENDDO
        !
        ! one- and two-node anm relations
        CALL NSSANM2(NUN,NX,NY,LL4F,LL4X,NG,BNDTL,NPASS,NMIX,IDL,KN,
     >  IQFR,QFR2,MAT,XXX,YYY,KEFF,DIFF,SIGR,CHI,SIGF,SCAT,FD,SAVG)
        !
        ! compute new drift coefficients
        DRIFT(:6,:NEL,:NG)=0.0
        DO IG=1,NG
          DO J=1,NY
            DO I=1,NX
              IEL=(J-1)*NX+I
              IND1=IDL(IEL)
              IF(IND1 == 0) CYCLE
              KK1=IQFR(1,I,J)
              KK2=IQFR(2,I,J)
              JXM=KN(1,I,J) ; JXP=KN(2,I,J)
              JYM=KN(3,I,J) ; JYP=KN(4,I,J)
              CALL NSSCO(NX,NY,NZ,NMIX,I,J,1,MAT,XX,YY,ZZ,DIFF(1,IG),
     >        IQFR(1,I,J),QFR2(1,IEL,IG),COEF)
              IF((KK1 < 0).AND.(KK2 < 0)) THEN
                DRIFT(1,IEL,IG)=-(SAVG(5*LL4F+JXM,IG)+COEF(1)*
     >          SAVG(IND1,IG))/SAVG(IND1,IG)
                DRIFT(2,IEL,IG)=-(SAVG(5*LL4F+JXP,IG)-COEF(2)*
     >          SAVG(IND1,IG))/SAVG(IND1,IG)
              ELSE IF(KK1 < 0) THEN
                DRIFT(1,IEL,IG)=-(SAVG(5*LL4F+JXM,IG)+COEF(1)*
     >          SAVG(IND1,IG))/SAVG(IND1,IG)
                IND3=IDL((J-1)*NX+I+1)
                IF(IND3 /= 0) DRIFT(2,IEL,IG)=-(SAVG(5*LL4F+JXP,IG)+
     >          COEF(2)*(SAVG(IND3,IG)-SAVG(IND1,IG)))/(SAVG(IND3,IG)+
     >          SAVG(IND1,IG))
              ELSE IF(KK2 < 0) THEN
                IND2=IDL((J-1)*NX+I-1)
                IF(IND2 /= 0) DRIFT(1,IEL,IG)=-(SAVG(5*LL4F+JXM,IG)+
     >          COEF(1)*(SAVG(IND1,IG)-SAVG(IND2,IG)))/(SAVG(IND1,IG)+
     >          SAVG(IND2,IG))
                DRIFT(2,IEL,IG)=-(SAVG(5*LL4F+JXP,IG)-COEF(2)*
     >          SAVG(IND1,IG))/SAVG(IND1,IG)
              ELSE
                IND2=IDL((J-1)*NX+I-1)
                IND3=IDL((J-1)*NX+I+1)
                IF(IND2 /= 0) DRIFT(1,IEL,IG)=-(SAVG(5*LL4F+JXM,IG)+
     >          COEF(1)*(SAVG(IND1,IG)-SAVG(IND2,IG)))/(SAVG(IND1,IG)+
     >          SAVG(IND2,IG))
                IF(IND3 /= 0) DRIFT(2,IEL,IG)=-(SAVG(5*LL4F+JXP,IG)+
     >          COEF(2)*(SAVG(IND3,IG)-SAVG(IND1,IG)))/(SAVG(IND3,IG)+
     >          SAVG(IND1,IG))
              ENDIF
              KK3=IQFR(3,I,J)
              KK4=IQFR(4,I,J)
              IF((KK3 < 0).AND.(KK4 < 0)) THEN
                DRIFT(3,IEL,IG)=-(SAVG(IOFY+JYM,IG)+COEF(3)*
     >          SAVG(IND1,IG))/SAVG(IND1,IG)
                DRIFT(4,IEL,IG)=-(SAVG(IOFY+JYP,IG)-COEF(4)*
     >          SAVG(IND1,IG))/SAVG(IND1,IG)
              ELSE IF(KK3 < 0) THEN
                DRIFT(3,IEL,IG)=-(SAVG(IOFY+JYM,IG)+COEF(3)*
     >          SAVG(IND1,IG))/SAVG(IND1,IG)
                IND3=IDL(J*NX+I)
                IF(IND3 /= 0) DRIFT(4,IEL,IG)=-(SAVG(IOFY+JYP,IG)+
     >          COEF(4)*(SAVG(IND3,IG)-SAVG(IND1,IG)))/(SAVG(IND3,IG)+
     >          SAVG(IND1,IG))
              ELSE IF(KK4 < 0) THEN
                IND2=IDL((J-2)*NX+I)
                IF(IND2 /= 0) DRIFT(3,IEL,IG)=-(SAVG(IOFY+JYM,IG)+
     >          COEF(3)*(SAVG(IND1,IG)-SAVG(IND2,IG)))/(SAVG(IND1,IG)+
     >          SAVG(IND2,IG))
                DRIFT(4,IEL,IG)=-(SAVG(IOFY+JYP,IG)-COEF(4)*
     >          SAVG(IND1,IG))/SAVG(IND1,IG)
              ELSE
                IND2=IDL((J-2)*NX+I)
                IND3=IDL(J*NX+I)
                IF(IND2 /= 0) DRIFT(3,IEL,IG)=-(SAVG(IOFY+JYM,IG)+
     >          COEF(3)*(SAVG(IND1,IG)-SAVG(IND2,IG)))/(SAVG(IND1,IG)+
     >          SAVG(IND2,IG))
                IF(IND3 /= 0) DRIFT(4,IEL,IG)=-(SAVG(IOFY+JYP,IG)+
     >          COEF(4)*(SAVG(IND3,IG)-SAVG(IND1,IG)))/(SAVG(IND3,IG)+
     >          SAVG(IND1,IG))
              ENDIF
            ENDDO
          ENDDO
        ENDDO
        IF(IMPX > 5) THEN
          DO IG=1,NG
            WRITE(6,'(28H NSSFL4: DRIFT COEFFICIENTS(,I5,2H):)') IG
            DO IEL=1,NX*NY
              WRITE(6,'(1P,I7,4E12.4)') IEL,DRIFT(:4,IEL,IG)
            ENDDO
          ENDDO
        ENDIF
      ENDDO
      DEALLOCATE(A11Z,A11Y,A11X)
*----
*  END OF NODAL CORRECTION LOOP
*----
      IF(IMPX.GT.0) WRITE(6,20) KEFF,JTER
      IF(IMPX > 2) THEN
        WRITE(6,'(/21H NSSFL4: UNKNOWNS----)')
        DO IG=1,NG
          WRITE(6,'(14H NSSFL4: SAVG(,I4,2H)=)') IG
          WRITE(6,'(1P,12E12.4)') SAVG(:LL4F,IG)
          WRITE(6,'(19H X-BOUNDARY FLUXES:)')
          WRITE(6,'(1P,12E12.4)') SAVG(LL4F+1:2*LL4F,IG)
          WRITE(6,'(1P,12E12.4)') SAVG(2*LL4F+1:3*LL4F,IG)
          WRITE(6,'(19H Y-BOUNDARY FLUXES:)')
          WRITE(6,'(1P,12E12.4)') SAVG(3*LL4F+1:4*LL4F,IG)
          WRITE(6,'(1P,12E12.4)') SAVG(4*LL4F+1:5*LL4F,IG)
          WRITE(6,'(12H X-CURRENTS:)')
          WRITE(6,'(1P,12E12.4)') SAVG(5*LL4F+1:IOFY,IG)
          WRITE(6,'(12H Y-CURRENTS:)')
          WRITE(6,'(1P,12E12.4)') SAVG(IOFY+1:NUN,IG)
          WRITE(6,'(5H ----)')
        ENDDO
      ENDIF
*----
*  SAVE SOLUTION
*----
      JPFLX=LCMGID(IPFLX,'FLUX')
      DO IG=1,NG
        CALL LCMPDL(JPFLX,IG,NUN,2,SAVG(1,IG))
      ENDDO
      JPFLX=LCMGID(IPFLX,'DRIFT')
      DO IG=1,NG
        CALL LCMPDL(JPFLX,IG,6*NEL,2,DRIFT(1,1,IG))
      ENDDO
      CALL LCMPUT(IPFLX,'K-EFFECTIVE',1,2,KEFF)
*----
*  SCRATCH STORAGE DEALLOCATION
*----
      DEALLOCATE(SAVG,DRIFT)
      DEALLOCATE(EVECT,ZZ,QFR2)
      RETURN
*
   10 FORMAT(14H NSSFL4: JTER=,I4,11H CMFD KEFF=,1P E13.6,
     1 12H OBTAINED IN,I4,28H CMFD ITERATIONS WITH ERROR=,
     2 1P,E11.4,1H.)
   20 FORMAT(18H NSSFL4: ANM KEFF=,F11.8,12H OBTAINED IN,I5,
     1 11H ITERATIONS)
      END