1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
|
*DECK NSSEIG
SUBROUTINE NSSEIG(NMAX,NMAY,NMAZ,LL4F,NDIM,NEL,NMIX,NG,MAT,IDL,
> VOL,MUX,MUY,MUZ,IMAX,IMAY,IMAZ,IPY,IPZ,CHI,SIGF,SCAT,A11X,A11Y,
> A11Z,EPSTHR,MAXTHR,NADI,EPSOUT,MAXOUT,ICL1,ICL2,ITER,EVECT,
> FKEFF,IMPX)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Solution of a multigroup eigenvalue system for the calculation of the
* direct neutron flux in Trivac. Use the preconditioned power method
* with a two-parameter SVAT acceleration technique. CMFD solution.
*
*Copyright:
* Copyright (C) 2023 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* NMAX first dimension of array A11X.
* NMAY first dimension of array A11Y.
* NMAZ first dimension of array A11Z.
* LL4F number of unknowns per energy group.
* NDIM number of dimensions (1, 2 or 3).
* NEL number of nodes.
* NMIX number of mixtures in the nodal calculation.
* NG number of energy groups.
* MAT material mixtures.
* IDL position of averaged fluxes in unknown vector.
* VOL node volumes.
* MUX X-oriented compressed storage mode indices.
* MUY Y-oriented compressed storage mode indices.
* MUZ Z-oriented compressed storage mode indices.
* IMAX X-oriented position of each first non-zero column element.
* IMAY Y-oriented position of each first non-zero column element.
* IMAZ Z-oriented position of each first non-zero column element.
* IPY Y-oriented permutation matrices.
* IPZ Z-oriented permutation matrices.
* CHI fission spectra.
* SIGF nu times fission cross section.
* SCAT scattering cross section.
* A11X X-oriented sparse coefficient matrix.
* A11Y Y-oriented sparse coefficient matrix.
* A11Z Z-oriented sparse coefficient matrix.
* EPSTHR thermal iteration epsilon.
* MAXTHR maximum number of thermal iterations.
* NADI number of inner ADI iterations.
* EPSOUT convergence epsilon for the power method.
* MAXOUT maximum number of iterations for the power method.
* ICL1 number of free iretations in one cycle of the up-scattering
* iterations.
* ICL2 number of accelerated up-scattering iterations in one cycle.
* EVECT initial estimate of fundamental eigenvalue.
* IMPX print parameter.
* FKEFF initial estimate of fundamental eigenvalue.
*
*Parameters: output
* ITER number of iterations.
* EVECT corresponding eigenvector.
* FKEFF fundamental eigenvalue.
*
*-----------------------------------------------------------------------
*
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER, INTENT(IN) :: NMAX,NMAY,NMAZ,LL4F,NDIM,NEL,NMIX,NG,
> MAT(NEL),IDL(NEL),MUX(LL4F),MUY(LL4F),MUZ(LL4F),IMAX(LL4F),
> IMAY(LL4F),IMAZ(LL4F),IPY(LL4F),IPZ(LL4F),MAXTHR,NADI,MAXOUT,
> ICL1,ICL2,IMPX
REAL, INTENT(IN) :: VOL(NEL),CHI(NMIX,NG),SIGF(NMIX,NG),
> SCAT(NMIX,NG,NG),A11X(NMAX,NG),A11Y(NMAY,NG),A11Z(NMAZ,NG)
INTEGER, INTENT(OUT) :: ITER
REAL, INTENT(IN) :: EPSTHR,EPSOUT
REAL, INTENT(INOUT) :: EVECT(LL4F,NG),FKEFF
*----
* LOCAL VARIABLES
*----
REAL, PARAMETER :: EPS1=1.0E-5
REAL(KIND=8), PARAMETER :: ALP_TAB(24) = (/ 0.2, 0.4, 0.6,
1 0.8, 1.0, 1.2, 1.5, 2.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0,
2 40.0, 45.0, 50.0, 55.0, 60.0, 65.0, 70.0, 75.0, 80.0, 85.0 /)
REAL(KIND=8), PARAMETER :: BET_TAB(11) = (/ -1.0, -0.8, -0.6,
1 -0.4, -0.2, 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 /)
REAL(KIND=8) :: AEAE,AEAG,AEAH,AGAG,AGAH,AHAH,BEBE,BEBG,BEBH,
1 BGBG,BGBH,BHBH,AEBE,AEBG,AEBH,AGBE,AGBG,AGBH,AHBE,AHBG,AHBH,
2 X,DXDA,DXDB,Y,DYDA,DYDB,Z,DZDA,DZDB,F,D2F(2,3),EVAL,ALP,BET,
3 FMIN,VVV
LOGICAL LOGTES
CHARACTER(LEN=3) :: TEXT3
*----
* ALLOCATABLE ARRAYS
*----
REAL, ALLOCATABLE, DIMENSION(:) :: S2,F1,GARM1,GARM2
REAL, ALLOCATABLE, DIMENSION(:,:) :: S,GRAD1,GRAD2,GAR1,GAR2,
1 GAR3,GAF1,GAF2,GAF3
REAL, ALLOCATABLE, DIMENSION(:,:) :: IA11X,IA11Y,IA11Z
REAL, ALLOCATABLE, DIMENSION(:,:,:) :: WORK
*----
* SCRATCH STORAGE ALLOCATION
*----
ALLOCATE(S2(LL4F),S(LL4F,NG),GRAD1(LL4F,NG),GRAD2(LL4F,NG),
> GAR1(LL4F,NG),GAR2(LL4F,NG),GAR3(LL4F,NG),GAF1(LL4F,NG),
> GAF2(LL4F,NG),GAF3(LL4F,NG),WORK(LL4F,NG,3),IA11X(NMAX,NG),
> IA11Y(NMAY,NG),IA11Z(NMAZ,NG))
*----
* LU MATRIX FACTORIZATION
*----
IA11X(:NMAX,:NG)=A11X(:NMAX,:NG)
DO IG=1,NG
CALL ALLUF(LL4F,IA11X(1,IG),MUX,IMAX)
ENDDO
IF(NDIM.GT.1) THEN
IA11Y(:NMAY,:NG)=A11Y(:NMAY,:NG)
DO IG=1,NG
CALL ALLUF(LL4F,IA11Y(1,IG),MUY,IMAY)
ENDDO
ENDIF
IF(NDIM.EQ.3) THEN
IA11Z(:NMAZ,:NG)=A11Z(:NMAZ,:NG)
DO IG=1,NG
CALL ALLUF(LL4F,IA11Z(1,IG),MUZ,IMAZ)
ENDDO
ENDIF
*----
* POWER METHOD
*----
NCTOT=ICL1+ICL2
IF(ICL2.EQ.0) THEN
NCPTM=NCTOT+1
ELSE
NCPTM=ICL1
ENDIF
EVAL=1.0D0/FKEFF
VVV=0.0D0
ISTART=1
NNADI=NADI
TEST=0.0
IF(IMPX.GE.2) WRITE (6,600) NADI
ITER=0
DO
ITER=ITER+1
IF(ITER > MAXOUT) CALL XABORT('NSSEIG: OUTER ITER. FAILURE.')
*----
* EIGENVALUE EVALUATION
*----
CALL NSSMPA(NMAX,NMAY,NMAZ,LL4F,NDIM,NEL,NMIX,NG,MAT,IDL,
> VOL,MUX,MUY,MUZ,IMAX,IMAY,IMAZ,IPY,IPZ,SCAT,A11X,A11Y,A11Z,
> EVECT,WORK(1,1,1))
CALL NSSMPB(LL4F,NEL,NMIX,NG,MAT,IDL,VOL,CHI,SIGF,EVECT,
> WORK(1,1,2))
AEBE=0.0D0
BEBE=0.0D0
DO IG=1,NG
DO I=1,LL4F
AEBE=AEBE+WORK(I,IG,1)*WORK(I,IG,2)
BEBE=BEBE+WORK(I,IG,2)**2
ENDDO
ENDDO
EVAL=AEBE/BEBE
S(:LL4F,:NG)=REAL(EVAL)*WORK(:LL4F,:NG,2)-WORK(:LL4F,:NG,1)
*----
* PERFORM THERMAL (UP-SCATTERING) ITERATIONS
*----
WORK(:LL4F,:NG,:3)=0.0D0
IGDEB=1
TEXT3='NO '
JTER=1
ALLOCATE(F1(LL4F),GARM1(LL4F),GARM2(LL4F))
DO
WORK(:LL4F,:NG,1)=WORK(:LL4F,:NG,2)
WORK(:LL4F,:NG,2)=WORK(:LL4F,:NG,3)
WORK(:LL4F,:NG,3)=0.0D0
GRAD1(:LL4F,:NG)=0.0D0
DO IG=IGDEB,NG
S2(:LL4F)=S(:LL4F,IG)
DO JG=1,NG
IF(JG.EQ.IG) CYCLE
DO IEL=1,NEL
IBM=MAT(IEL)
IF(IBM.LE.0) CYCLE
IND=IDL(IEL)
IF(IND.EQ.0) CYCLE
S2(IND)=S2(IND)+VOL(IEL)*SCAT(IBM,IG,JG)*GRAD1(IND,JG)
ENDDO
ENDDO
*
WORK(:LL4F,IG,3)=0.0
DO IADI=1,NNADI
IF(IADI.EQ.1) THEN
F1(:LL4F)=S2(:LL4F)
ELSE
* scalar multiplication for a x-oriented matrix.
CALL ALLUM(LL4F,A11X(1,IG),WORK(1,IG,3),F1(1),MUX,
1 IMAX,1)
IF(NDIM.GE.2) THEN
* scalar multiplication for a y-oriented matrix.
GARM1(IPY(:LL4F))=WORK(:LL4F,IG,3)
GARM2(IPY(:LL4F))=F1(:LL4F)
CALL ALLUM(LL4F,A11Y(1,IG),GARM1(1),GARM2(1),MUY,
1 IMAY,2)
F1(:LL4F)=GARM2(IPY(:LL4F))
ENDIF
IF(NDIM.EQ.3) THEN
* scalar multiplication for a z-oriented matrix.
GARM1(IPZ(:LL4F))=WORK(:LL4F,IG,3)
GARM2(IPZ(:LL4F))=F1(:LL4F)
CALL ALLUM(LL4F,A11Z(1,IG),GARM1(1),GARM2(1),MUZ,
1 IMAZ,2)
F1(:LL4F)=GARM2(IPZ(:LL4F))
ENDIF
F1(:LL4F)=S2(:LL4F)-F1(:LL4F)
ENDIF
* scalar solution for a x-oriented linear system.
CALL ALLUS(LL4F,MUX,IMAX,IA11X(1,IG),F1)
IF(NDIM.GE.2) THEN
* scalar solution for a y-oriented linear system.
DO I=1,LL4F
II=IPY(I)
GARM1(II)=F1(I)*A11Y(MUY(II),IG)
ENDDO
CALL ALLUS(LL4F,MUY,IMAY,IA11Y(1,IG),GARM1)
F1(:LL4F)=GARM1(IPY(:LL4F))
ENDIF
IF(NDIM.EQ.3) THEN
* scalar solution for a z-oriented linear system.
DO I=1,LL4F
II=IPZ(I)
GARM1(II)=F1(I)*A11Z(MUZ(II),IG)
ENDDO
CALL ALLUS(LL4F,MUZ,IMAZ,IA11Z(1,IG),GARM1)
F1(:LL4F)=GARM1(IPZ(:LL4F))
ENDIF
WORK(:LL4F,IG,3)=WORK(:LL4F,IG,3)+F1(:LL4F)
GRAD1(:LL4F,IG)=WORK(:LL4F,IG,3)
ENDDO
ENDDO
IF(MAXTHR.EQ.0) EXIT
IF(MOD(JTER-1,NCTOT).GE.NCPTM) THEN
CALL NSS2AC(NG,LL4F,IGDEB,WORK,ZMU)
ELSE
ZMU=1.0D0
ENDIF
IGDEBO=IGDEB
DO IG=IGDEBO,NG
GINN=0.0D0
FINN=0.0D0
DO I=1,LL4F
GINN=MAX(GINN,ABS(WORK(I,IG,2)-WORK(I,IG,3)))
FINN=MAX(FINN,ABS(WORK(I,IG,3)))
ENDDO
GINN=GINN/FINN
IF((GINN.LT.EPSTHR).AND.(IGDEB.EQ.IG)) IGDEB=IGDEB+1
ENDDO
IF(GINN.LT.EPSTHR) TEXT3='YES'
IF(IMPX.GT.2) WRITE(6,610) JTER,GINN,EPSTHR,IGDEB,ZMU,TEXT3
IF((GINN.LT.EPSTHR).OR.(JTER.EQ.MAXTHR)) EXIT
JTER=JTER+1
ENDDO
DEALLOCATE(GARM2,GARM1,F1)
*----
* DISPLACEMENT EVALUATION
*----
F=0.0D0
DELS=ABS(REAL((EVAL-VVV)/EVAL))
VVV=EVAL
*----
* EVALUATION OF THE TWO ACCELERATION PARAMETERS ALP AND BET
*----
ALP=1.0D0
BET=0.0D0
N=0
AEAE=0.0D0
AEAG=0.0D0
AEAH=0.0D0
AGAG=0.0D0
AGAH=0.0D0
AHAH=0.0D0
BEBG=0.0D0
BEBH=0.0D0
BGBG=0.0D0
BGBH=0.0D0
BHBH=0.0D0
AEBG=0.0D0
AEBH=0.0D0
AGBE=0.0D0
AGBG=0.0D0
AGBH=0.0D0
AHBE=0.0D0
AHBG=0.0D0
AHBH=0.0D0
CALL NSSMPA(NMAX,NMAY,NMAZ,LL4F,NDIM,NEL,NMIX,NG,MAT,IDL,VOL,
> MUX,MUY,MUZ,IMAX,IMAY,IMAZ,IPY,IPZ,SCAT,A11X,A11Y,A11Z,EVECT,
> GAR1)
CALL NSSMPA(NMAX,NMAY,NMAZ,LL4F,NDIM,NEL,NMIX,NG,MAT,IDL,VOL,
> MUX,MUY,MUZ,IMAX,IMAY,IMAZ,IPY,IPZ,SCAT,A11X,A11Y,A11Z,GRAD1,
> GAR2)
IF(1+MOD(ITER-ISTART,ICL1+ICL2).GT.ICL1) THEN
CALL NSSMPB(LL4F,NEL,NMIX,NG,MAT,IDL,VOL,CHI,SIGF,EVECT,GAF1)
CALL NSSMPB(LL4F,NEL,NMIX,NG,MAT,IDL,VOL,CHI,SIGF,GRAD1,GAF2)
CALL NSSMPB(LL4F,NEL,NMIX,NG,MAT,IDL,VOL,CHI,SIGF,GRAD2,GAF3)
DO IG=1,NG
DO I=1,LL4F
* COMPUTE (A ,A )
AEAE=AEAE+GAR1(I,IG)**2
AEAG=AEAG+GAR1(I,IG)*GAR2(I,IG)
AEAH=AEAH+GAR1(I,IG)*GAR3(I,IG)
AGAG=AGAG+GAR2(I,IG)**2
AGAH=AGAH+GAR2(I,IG)*GAR3(I,IG)
AHAH=AHAH+GAR3(I,IG)**2
* COMPUTE (B ,B )
BEBG=BEBG+GAF1(I,IG)*GAF2(I,IG)
BEBH=BEBH+GAF1(I,IG)*GAF3(I,IG)
BGBG=BGBG+GAF2(I,IG)**2
BGBH=BGBH+GAF2(I,IG)*GAF3(I,IG)
BHBH=BHBH+GAF3(I,IG)**2
* COMPUTE (A ,B )
AEBG=AEBG+GAR1(I,IG)*GAF2(I,IG)
AEBH=AEBH+GAR1(I,IG)*GAF3(I,IG)
AGBE=AGBE+GAR2(I,IG)*GAF1(I,IG)
AGBG=AGBG+GAR2(I,IG)*GAF2(I,IG)
AGBH=AGBH+GAR2(I,IG)*GAF3(I,IG)
AHBE=AHBE+GAR3(I,IG)*GAF1(I,IG)
AHBG=AHBG+GAR3(I,IG)*GAF2(I,IG)
AHBH=AHBH+GAR3(I,IG)*GAF3(I,IG)
ENDDO
ENDDO
*
210 N=N+1
IF(N.GT.10) GO TO 215
* COMPUTE X(ITER+1)
X=BEBE+ALP*ALP*BGBG+BET*BET*BHBH+2.0D0*(ALP*BEBG+BET*BEBH
> +ALP*BET*BGBH)
DXDA=2.0D0*(BEBG+ALP*BGBG+BET*BGBH)
DXDB=2.0D0*(BEBH+ALP*BGBH+BET*BHBH)
* COMPUTE Y(ITER+1)
Y=AEAE+ALP*ALP*AGAG+BET*BET*AHAH+2.0D0*(ALP*AEAG+BET*AEAH
> +ALP*BET*AGAH)
DYDA=2.0D0*(AEAG+ALP*AGAG+BET*AGAH)
DYDB=2.0D0*(AEAH+ALP*AGAH+BET*AHAH)
* COMPUTE Z(ITER+1)
Z=AEBE+ALP*ALP*AGBG+BET*BET*AHBH+ALP*(AEBG+AGBE)
> +BET*(AEBH+AHBE)+ALP*BET*(AGBH+AHBG)
DZDA=AEBG+AGBE+2.0D0*ALP*AGBG+BET*(AGBH+AHBG)
DZDB=AEBH+AHBE+ALP*(AGBH+AHBG)+2.0D0*BET*AHBH
* COMPUTE F(ITER+1)
F=X*Y-Z*Z
D2F(1,1)=2.0D0*(BGBG*Y+DXDA*DYDA+X*AGAG-DZDA**2-2.0D0*Z*AGBG)
D2F(1,2)=2.0D0*BGBH*Y+DXDA*DYDB+DXDB*DYDA+2.0D0*X*AGAH
> -2.0D0*DZDA*DZDB-2.0D0*Z*(AGBH+AHBG)
D2F(2,2)=2.0D0*(BHBH*Y+DXDB*DYDB+X*AHAH-DZDB**2-2.0D0*Z*AHBH)
D2F(2,1)=D2F(1,2)
D2F(1,3)=DXDA*Y+X*DYDA-2.0D0*Z*DZDA
D2F(2,3)=DXDB*Y+X*DYDB-2.0D0*Z*DZDB
* SOLUTION OF A LINEAR SYSTEM.
CALL ALSBD(2,1,D2F,IER,2)
IF(IER.NE.0) GO TO 215
ALP=ALP-D2F(1,3)
BET=BET-D2F(2,3)
IF(ALP.GT.100.0D0) GO TO 215
IF((ABS(D2F(1,3)).LE.1.0D-4).AND.(ABS(D2F(2,3)).LE.1.0D-4))
> GO TO 220
GO TO 210
*
* alternative algorithm in case of Newton-Raphton failure
215 IF(IMPX.GT.0) WRITE(6,'(/30H NSSEIG: FAILURE OF THE NEWTON,
> 55H-RAPHTON ALGORIHTHM FOR COMPUTING THE OVERRELAXATION PA,
> 9HRAMETERS.)')
IAMIN=999
IBMIN=999
FMIN=HUGE(FMIN)
DO IA=1,SIZE(ALP_TAB)
ALP=ALP_TAB(IA)
DO IB=1,SIZE(BET_TAB)
BET=BET_TAB(IB)
* COMPUTE X
X=BEBE+ALP*ALP*BGBG+BET*BET*BHBH+2.0D0*(ALP*BEBG+BET*BEBH
> +ALP*BET*BGBH)
* COMPUTE Y
Y=AEAE+ALP*ALP*AGAG+BET*BET*AHAH+2.0D0*(ALP*AEAG+BET*AEAH
> +ALP*BET*AGAH)
* COMPUTE Z
Z=AEBE+ALP*ALP*AGBG+BET*BET*AHBH+ALP*(AEBG+AGBE)
> +BET*(AEBH+AHBE)+ALP*BET*(AGBH+AHBG)
* COMPUTE F
F=X*Y-Z*Z
IF(F.LT.FMIN) THEN
IAMIN=IA
IBMIN=IB
FMIN=F
ENDIF
ENDDO
ENDDO
ALP=ALP_TAB(IAMIN)
BET=BET_TAB(IBMIN)
220 BET=BET/ALP
IF((ALP.LT.1.0D0).AND.(ALP.GT.0.0D0)) THEN
ALP=1.0D0
BET=0.0D0
ELSE IF(ALP.LE.0.0D0) THEN
ISTART=ITER+1
ALP=1.0D0
BET=0.0D0
ENDIF
DO IG=1,NG
DO I=1,LL4F
GRAD1(I,IG)=REAL(ALP)*(GRAD1(I,IG)+REAL(BET)*GRAD2(I,IG))
GAR2(I,IG)=REAL(ALP)*(GAR2(I,IG)+REAL(BET)*GAR3(I,IG))
ENDDO
ENDDO
ENDIF
*
LOGTES=(ITER.LT.ICL1).OR.(MOD(ITER-ISTART,ICL1+ICL2).EQ.ICL1-1)
DELT=0.0D0
IF(LOGTES.AND.(DELS.LE.EPS1)) THEN
CALL NSSMPB(LL4F,NEL,NMIX,NG,MAT,IDL,VOL,CHI,SIGF,EVECT,GAF1)
CALL NSSMPB(LL4F,NEL,NMIX,NG,MAT,IDL,VOL,CHI,SIGF,GRAD1,GAF2)
DO IG=1,NG
DELN=0.0D0
DELD=0.0D0
DO I=1,LL4F
EVECT(I,IG)=EVECT(I,IG)+GRAD1(I,IG)
GAR1(I,IG)=GAR1(I,IG)+GAR2(I,IG)
GRAD2(I,IG)=GRAD1(I,IG)
GAR3(I,IG)=GAR2(I,IG)
DELN=MAX(DELN,ABS(GAF2(I,IG)))
DELD=MAX(DELD,ABS(GAF1(I,IG)))
ENDDO
IF(DELD.NE.0.0D0) DELT=MAX(DELT,DELN/DELD)
ENDDO
IF(IMPX.GE.2) WRITE (6,620) ITER,AEAE,AEAG,AEAH,AGAG,AGAH,
> AHAH,BEBE,ALP,BET,EVAL,F,DELS,DELT,N,BEBG,BEBH,BGBG,BGBH,
> BHBH,AEBE,AEBG,AEBH,AGBE,AGBG,AGBH,AHBE,AHBG,AHBH
IF(DELT.LE.EPSOUT) EXIT
ELSE
DO IG=1,NG
DO I=1,LL4F
EVECT(I,IG)=EVECT(I,IG)+GRAD1(I,IG)
GAR1(I,IG)=GAR1(I,IG)+GAR2(I,IG)
GRAD2(I,IG)=GRAD1(I,IG)
GAR3(I,IG)=GAR2(I,IG)
ENDDO
ENDDO
IF(IMPX.GE.2) WRITE (6,620) ITER,AEAE,AEAG,AEAH,AGAG,AGAH,
> AHAH,BEBE,ALP,BET,EVAL,F,DELS,DELT,N,BEBG,BEBH,BGBG,BGBH,
> BHBH,AEBE,AEBG,AEBH,AGBE,AGBG,AGBH,AHBE,AHBG,AHBH
ENDIF
*
IF(ITER.EQ.1) TEST=DELS
IF((ITER.GT.5).AND.(DELS.GT.TEST)) CALL XABORT('NSSEIG: CONVER'
> //'GENCE FAILURE.')
IF(ITER.GE.MAXOUT) THEN
WRITE (6,630)
EXIT
ENDIF
IF(MOD(ITER,36).EQ.0) THEN
ISTART=ITER+1
NNADI=NNADI+1
IF(IMPX.GE.1) WRITE (6,650) NNADI
ENDIF
ENDDO
*----
* FLUX NORMALIZATION
*----
FMAX=MAXVAL(EVECT(:LL4F,:NG))
EVECT(:LL4F,:NG)=EVECT(:LL4F,:NG)/FMAX
*----
* SOLUTION EDITION
*----
FKEFF=REAL(1.0D0/EVAL)
IF(IMPX.GE.1) WRITE (6,640) ITER,FKEFF
*----
* SCRATCH STORAGE DEALLOCATION
*----
DEALLOCATE(IA11Z,IA11Y,IA11X)
DEALLOCATE(WORK,GAF3,GAF2,GAF1,GAR3,GAR2,GAR1,GRAD2,GRAD1,S,S2)
RETURN
*----
* FORMATS
*----
600 FORMAT(1H1/50H NSSEIG: ITERATIVE PROCEDURE BASED ON PRECONDITION,
> 17HED POWER METHOD (,I2,37H ADI ITERATIONS PER OUTER ITERATION)./
> 9X,16HDIRECT EQUATION.)
610 FORMAT (10X,3HIN(,I3,6H) FLX:,5H PRC=,1P,E9.2,5H TAR=,E9.2,
> 7H IGDEB=, I13,6H ACCE=,0P,F12.5,12H CONVERGED=,A3)
620 FORMAT(1X,I3,1P,7E9.1,0P,2F8.3,E14.6,3E10.2,I4/(4X,1P,7E9.1))
630 FORMAT(/53H NSSEIG: ***WARNING*** THE MAXIMUM NUMBER OF OUTER IT,
> 20HERATIONS IS REACHED.)
640 FORMAT(/23H NSSEIG: CONVERGENCE IN,I4,12H ITERATIONS.//
> 42H NSSEIG: EFFECTIVE MULTIPLICATION FACTOR =,1P,E17.10/)
650 FORMAT(/53H NSSEIG: INCREASING THE NUMBER OF INNER ITERATIONS TO,
1 I3,36H ADI ITERATIONS PER OUTER ITERATION./)
!
CONTAINS
SUBROUTINE NSSMPA(NMAX,NMAY,NMAZ,LL4F,NDIM,NEL,NMIX,NG,MAT,IDL,
> VOL,MUX,MUY,MUZ,IMAX,IMAY,IMAZ,IPY,IPZ,SCAT,A11X,A11Y,A11Z,
> EVECT,S2)
!
! A*EVECT MULTIPLICATION
!
INTEGER, INTENT(IN) :: NMAX,NMAY,NMAZ,LL4F,NDIM,NEL,NMIX,NG,
> MAT(NEL),IDL(NEL),MUX(LL4F),MUY(LL4F),MUZ(LL4F),IMAX(LL4F),
> IMAY(LL4F),IMAZ(LL4F),IPY(LL4F),IPZ(LL4F)
REAL, INTENT(IN) :: VOL(NEL),SCAT(NMIX,NG,NG)
REAL, INTENT(IN) :: EVECT(LL4F,NG),A11X(NMAX,NG),A11Y(NMAY,NG),
> A11Z(NMAZ,NG)
REAL, INTENT(OUT) :: S2(LL4F,NG)
REAL, ALLOCATABLE, DIMENSION(:) :: GAR1,GAR2
!
ALLOCATE(GAR1(LL4F),GAR2(LL4F))
DO IG=1,NG
* scalar multiplication for a x-oriented matrix.
CALL ALLUM(LL4F,A11X(1,IG),EVECT(1,IG),S2(1,IG),MUX,IMAX,1)
IF(NDIM.GE.2) THEN
* scalar multiplication for a y-oriented matrix.
GAR1(IPY(:LL4F))=EVECT(:LL4F,IG)
GAR2(IPY(:LL4F))=S2(:LL4F,IG)
CALL ALLUM(LL4F,A11Y(1,IG),GAR1(1),GAR2(1),MUY,IMAY,2)
S2(:LL4F,IG)=GAR2(IPY(:LL4F))
ENDIF
IF(NDIM.EQ.3) THEN
* scalar multiplication for a z-oriented matrix.
GAR1(IPZ(:LL4F))=EVECT(:LL4F,IG)
GAR2(IPZ(:LL4F))=S2(:LL4F,IG)
CALL ALLUM(LL4F,A11Z(1,IG),GAR1(1),GAR2(1),MUZ,IMAZ,2)
S2(:LL4F,IG)=GAR2(IPZ(:LL4F))
ENDIF
DO JG=1,NG
IF(JG.EQ.IG) CYCLE
DO IEL=1,NEL
IBM=MAT(IEL)
IF(IBM.LE.0) CYCLE
IND=IDL(IEL)
IF(IND.EQ.0) CYCLE
S2(IND,IG)=S2(IND,IG)-VOL(IEL)*SCAT(IBM,IG,JG)*
> EVECT(IND,JG)
ENDDO
ENDDO
ENDDO
DEALLOCATE(GAR2,GAR1)
END SUBROUTINE NSSMPA
!
SUBROUTINE NSSMPB(LL4F,NEL,NMIX,NG,MAT,IDL,VOL,CHI,SIGF,EVECT,
> S2)
!
! B*EVECT MULTIPLICATION
!
INTEGER, INTENT(IN) :: LL4F,NEL,NMIX,NG,MAT(NEL),IDL(NEL)
REAL, INTENT(IN) :: VOL(NEL),CHI(NMIX,NG),SIGF(NMIX,NG)
REAL, INTENT(IN) :: EVECT(LL4F,NG)
REAL, INTENT(OUT) :: S2(LL4F,NG)
!
S2(:LL4F,:NG)=0.0D0
DO IG=1,NG
DO JG=1,NG ! IG <-- JG
DO IEL=1,NEL
IBM=MAT(IEL)
IF(IBM.LE.0) CYCLE
IND=IDL(IEL)
IF(IND.EQ.0) CYCLE
S2(IND,IG)=S2(IND,IG)+VOL(IEL)*CHI(IBM,IG)*SIGF(IBM,JG)*
> EVECT(IND,JG)
ENDDO
ENDDO
ENDDO
END SUBROUTINE NSSMPB
END SUBROUTINE NSSEIG
|