summaryrefslogtreecommitdiff
path: root/Trivac/src/NSSDFC.f
blob: 1c910be62549d9552c6732bba99d4a9282f576c8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
*DECK NSSDFC
      SUBROUTINE NSSDFC(IMPX,IDIM,NX,NY,NZ,NCODE,ICODE,ZCODE,MAT,XXX,
     1 YYY,ZZZ,LL4F,LL4X,LL4Y,LL4Z,VOL,XX,YY,ZZ,IDL,KN,QFR,IQFR,MUX,
     2 MUY,MUZ,IMAX,IMAY,IMAZ,IPY,IPZ)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Numbering corresponding to a coarse mesh finite difference (NEM
* type) in a 3-D geometry.
*
*Copyright:
* Copyright (C) 2022 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IMPX    print parameter.
* IDIM    number of Cartesian dimensions.
* NX      number of elements along the X axis.
* NY      number of elements along the Y axis.
* NZ      number of elements along the Z axis.
* NCODE   type of boundary condition applied on each side:
*         I=1: X-; I=2: X+; I=3: Y-; I=4: Y+; I=5: Z-; I=6: Z+;
*         NCODE(I)=1: VOID;  NCODE(I)=2: REFL;  NCODE(I)=4: TRAN;
*         NCODE(I)=7: ZERO.
* ICODE   physical albedo index on each side of the domain.
* ZCODE   albedo corresponding to boundary condition 'VOID' on each
*         side (ZCODE(i)=0.0 by default).
* MAT     mixture index assigned to each element.
* XXX     Cartesian coordinates along the X axis.
* YYY     Cartesian coordinates along the Y axis.
* ZZZ     Cartesian coordinates along the Z axis.
* LL4F    total number of averaged flux unknown per energy group.
*
*Parameters: output
* LL4X    total number of X-direccted interface net currents.
* LL4Y    total number of Y-direccted interface net currents.
* LL4Z    total number of Z-direccted interface net currents.
* VOL     volume of each element.
* XX      X-directed mesh spacings.
* YY      Y-directed mesh spacings.
* ZZ      Z-directed mesh spacings.
* IDL     position of averaged fluxes in unknown vector.
* KN      element-ordered interface net current unknown list.
* QFR     element-ordered boundary conditions.
* IQFR    element-ordered physical albedo indices.
* MUX     X-oriented compressed storage mode indices.
* MUY     Y-oriented compressed storage mode indices.
* MUZ     Z-oriented compressed storage mode indices.
* IMAX    X-oriented position of each first non-zero column element.
* IMAY    Y-oriented position of each first non-zero column element.
* IMAZ    Z-oriented position of each first non-zero column element.
* IPY     Y-oriented permutation matrices.
* IPZ     Z-oriented permutation matrices.
*
*-----------------------------------------------------------------------
*
      INTEGER IMPX,IDIM,NX,NY,NZ,NCODE(6),ICODE(6),MAT(NX,NY,NZ),LL4F,
     1 LL4X,LL4Y,LL4Z,IDL(NX,NY,NZ),KN(6,NX,NY,NZ),IQFR(6,NX,NY,NZ),
     2 MUX(LL4F),MUY(LL4F),MUZ(LL4F),IMAX(LL4F),IMAY(LL4F),IMAZ(LL4F),
     3 IPY(LL4F),IPZ(LL4F)
      REAL ZCODE(6),XXX(NX+1),YYY(NY+1),ZZZ(NZ+1),VOL(NX,NY,NZ),
     1 XX(NX,NY,NZ),YY(NX,NY,NZ),ZZ(NX,NY,NZ),QFR(6,NX,NY,NZ)
*----
*  LOCAL VARIABLES
*----
      LOGICAL LL1,LALB
      INTEGER, ALLOCATABLE, DIMENSION(:) :: JPX,JPY,JPZ
*
      ALB(X)=0.5*(1.0-X)/(1.0+X)
*----
*  IDENTIFICATION OF THE NON VIRTUAL NODES
*----
      IF(IMPX.GT.0) WRITE(6,700) NX,NY,NZ
      ALLOCATE(JPX((NX+1)*NY*NZ),JPY((NY+1)*NX*NZ),JPZ((NZ+1)*NX*NY))
      JPX(:)=0
      JPY(:)=0
      JPZ(:)=0
      IND=0
      DO K0=1,NZ
        DO K1=1,NY
          DO K2=1,NX
            IDL(K2,K1,K0)=0
            KN(:6,K2,K1,K0)=0
            IF(MAT(K2,K1,K0).EQ.0) CYCLE
            IND=IND+1
            IDL(K2,K1,K0)=IND
            KN(1,K2,K1,K0)=K2    +(NX+1)*(K1-1)+(NX+1)*NY*(K0-1)
            KN(2,K2,K1,K0)=(K2+1)+(NX+1)*(K1-1)+(NX+1)*NY*(K0-1)
            KN(3,K2,K1,K0)=K1    +(NY+1)*(K0-1)+(NY+1)*NZ*(K2-1)
            KN(4,K2,K1,K0)=(K1+1)+(NY+1)*(K0-1)+(NY+1)*NZ*(K2-1)
            KN(5,K2,K1,K0)=K0    +(NZ+1)*(K2-1)+(NZ+1)*NX*(K1-1)
            KN(6,K2,K1,K0)=(K0+1)+(NZ+1)*(K2-1)+(NZ+1)*NX*(K1-1)
            JPX(KN(1:2,K2,K1,K0))=1
            JPY(KN(3:4,K2,K1,K0))=1
            JPZ(KN(5:6,K2,K1,K0))=1
          ENDDO
        ENDDO
      ENDDO
      IF(IND.NE.LL4F) CALL XABORT('NSSDFC: WRONG VALUE OF LL4F.')
      LL4X=0
      DO I=1,(NX+1)*NY*NZ
        IF(JPX(I).EQ.1) THEN
          LL4X=LL4X+1
          JPX(I)=LL4X
        ENDIF
      ENDDO
      LL4Y=0
      DO I=1,(NY+1)*NX*NZ
        IF(JPY(I).EQ.1) THEN
          LL4Y=LL4Y+1
          JPY(I)=LL4Y
        ENDIF
      ENDDO
      LL4Z=0
      DO I=1,(NZ+1)*NX*NY
        IF(JPZ(I).EQ.1) THEN
          LL4Z=LL4Z+1
          JPZ(I)=LL4Z
        ENDIF
      ENDDO
      DO K0=1,NZ
        DO K1=1,NY
          DO K2=1,NX
            IF(MAT(K2,K1,K0).EQ.0) CYCLE
            KN(1:2,K2,K1,K0)=JPX(KN(1:2,K2,K1,K0))
            KN(3:4,K2,K1,K0)=JPY(KN(3:4,K2,K1,K0))
            KN(5:6,K2,K1,K0)=JPZ(KN(5:6,K2,K1,K0))
          ENDDO
        ENDDO
      ENDDO
      DEALLOCATE(JPZ,JPY,JPX)
*----
*  IDENTIFICATION OF THE GEOMETRY. MAIN LOOP OVER THE NODES
*----
      QFR(:6,:NX,:NY,:NZ)=0.0
      IQFR(:6,:NX,:NY,:NZ)=-99
      DO K0=1,NZ
        DO K1=1,NY
          DO K2=1,NX
            XX(K2,K1,K0)=0.0
            YY(K2,K1,K0)=0.0
            ZZ(K2,K1,K0)=0.0
            VOL(K2,K1,K0)=0.0
            IF(MAT(K2,K1,K0).LE.0) CYCLE
            XX(K2,K1,K0)=XXX(K2+1)-XXX(K2)
            YY(K2,K1,K0)=YYY(K1+1)-YYY(K1)
            ZZ(K2,K1,K0)=ZZZ(K0+1)-ZZZ(K0)
*----
*  VOID, REFL OR ZERO BOUNDARY CONTITION
*----
            IQFR(:2,K2,K1,K0)=0
            IF(K2.EQ.1) THEN
              LL1=.TRUE.
            ELSE
              LL1=(MAT(K2-1,K1,K0).EQ.0)
            ENDIF
            IF(LL1) THEN
              LALB=(NCODE(1).EQ.1).OR.(NCODE(1).EQ.6)
              IF(LALB.AND.(ICODE(1).EQ.0)) THEN
                QFR(1,K2,K1,K0)=ALB(ZCODE(1))
                IQFR(1,K2,K1,K0)=-1
              ELSE IF(LALB) THEN
                QFR(1,K2,K1,K0)=1.0
                IQFR(1,K2,K1,K0)=ICODE(1)
              ELSE IF(NCODE(1).EQ.2) THEN
                IQFR(1,K2,K1,K0)=-2
              ELSE IF(NCODE(1).EQ.7) THEN
                IQFR(1,K2,K1,K0)=-3
              ELSE IF(NCODE(1).EQ.5) THEN
                CALL XABORT('NSSDFC: SYME NOT IMPLEMENTED(1).')
              ENDIF
            ENDIF
*
            IF(K2.EQ.NX) THEN
              LL1=.TRUE.
            ELSE
              LL1=(MAT(K2+1,K1,K0).EQ.0)
            ENDIF
            IF(LL1) THEN
              LALB=(NCODE(2).EQ.1).OR.(NCODE(2).EQ.6)
              IF(LALB.AND.(ICODE(2).EQ.0)) THEN
                QFR(2,K2,K1,K0)=ALB(ZCODE(2))
                IQFR(2,K2,K1,K0)=-1
              ELSE IF(LALB) THEN
                QFR(2,K2,K1,K0)=1.0
                IQFR(2,K2,K1,K0)=ICODE(2)
              ELSE IF(NCODE(2).EQ.2) THEN
                IQFR(2,K2,K1,K0)=-2
              ELSE IF(NCODE(2).EQ.7) THEN
                IQFR(2,K2,K1,K0)=-3
              ELSE IF(NCODE(1).EQ.5) THEN
                CALL XABORT('NSSDFC: SYME NOT IMPLEMENTED(2).')
              ENDIF
            ENDIF
*
            IF(IDIM == 1) GO TO 100
            IQFR(3:4,K2,K1,K0)=0
            IF(K1.EQ.1) THEN
              LL1=.TRUE.
            ELSE
              LL1=(MAT(K2,K1-1,K0).EQ.0)
            ENDIF
            IF(LL1) THEN
              LALB=(NCODE(3).EQ.1).OR.(NCODE(3).EQ.6)
              IF(LALB.AND.(ICODE(3).EQ.0)) THEN
                QFR(3,K2,K1,K0)=ALB(ZCODE(3))
                IQFR(3,K2,K1,K0)=-1
              ELSE IF(LALB) THEN
                QFR(3,K2,K1,K0)=1.0
                IQFR(3,K2,K1,K0)=ICODE(3)
              ELSE IF(NCODE(3).EQ.2) THEN
                IQFR(3,K2,K1,K0)=-2
              ELSE IF(NCODE(3).EQ.7) THEN
                IQFR(3,K2,K1,K0)=-3
              ELSE IF(NCODE(1).EQ.5) THEN
                CALL XABORT('NSSDFC: SYME NOT IMPLEMENTED(3).')
              ENDIF
            ENDIF
*
            IF(K1.EQ.NY) THEN
              LL1=.TRUE.
            ELSE
              LL1=(MAT(K2,K1+1,K0).EQ.0)
            ENDIF
            IF(LL1) THEN
              LALB=(NCODE(4).EQ.1).OR.(NCODE(4).EQ.6)
              IF(LALB.AND.(ICODE(4).EQ.0)) THEN
                QFR(4,K2,K1,K0)=ALB(ZCODE(4))
                IQFR(4,K2,K1,K0)=-1
              ELSE IF(LALB) THEN
                QFR(4,K2,K1,K0)=1.0
                IQFR(4,K2,K1,K0)=ICODE(4)
              ELSE IF(NCODE(4).EQ.2) THEN
                IQFR(4,K2,K1,K0)=-2
              ELSE IF(NCODE(4).EQ.7) THEN
                IQFR(4,K2,K1,K0)=-3
              ELSE IF(NCODE(1).EQ.5) THEN
                CALL XABORT('NSSDFC: SYME NOT IMPLEMENTED(4).')
              ENDIF
            ENDIF
*
            IF(IDIM == 2) GO TO 100
            IQFR(5:6,K2,K1,K0)=0
            IF(K0.EQ.1) THEN
              LL1=.TRUE.
            ELSE
              LL1=(MAT(K2,K1,K0-1).EQ.0)
            ENDIF
            IF(LL1) THEN
              LALB=(NCODE(5).EQ.1).OR.(NCODE(5).EQ.6)
              IF(LALB.AND.(ICODE(5).EQ.0)) THEN
                QFR(5,K2,K1,K0)=ALB(ZCODE(5))
                IQFR(5,K2,K1,K0)=-1
              ELSE IF(LALB) THEN
                QFR(5,K2,K1,K0)=1.0
                IQFR(5,K2,K1,K0)=ICODE(5)
              ELSE IF(NCODE(5).EQ.2) THEN
                IQFR(5,K2,K1,K0)=-2
              ELSE IF(NCODE(5).EQ.7) THEN
                IQFR(5,K2,K1,K0)=-3
              ELSE IF(NCODE(1).EQ.5) THEN
                CALL XABORT('NSSDFC: SYME NOT IMPLEMENTED(5).')
              ENDIF
            ENDIF
*
            IF(K0.EQ.NZ) THEN
              LL1=.TRUE.
            ELSE
              LL1=(MAT(K2,K1,K0+1).EQ.0)
            ENDIF
            IF(LL1) THEN
              LALB=(NCODE(6).EQ.1).OR.(NCODE(6).EQ.6)
              IF(LALB.AND.(ICODE(6).EQ.0)) THEN
                QFR(6,K2,K1,K0)=ALB(ZCODE(6))
                IQFR(6,K2,K1,K0)=-1
              ELSE IF(LALB) THEN
                QFR(6,K2,K1,K0)=1.0
                IQFR(6,K2,K1,K0)=ICODE(6)
              ELSE IF(NCODE(6).EQ.2) THEN
                IQFR(6,K2,K1,K0)=-2
              ELSE IF(NCODE(6).EQ.7) THEN
                IQFR(6,K2,K1,K0)=-3
              ELSE IF(NCODE(1).EQ.5) THEN
                CALL XABORT('NSSDFC: SYME NOT IMPLEMENTED(6).')
              ENDIF
            ENDIF
*----
*  TRAN BOUNDARY CONDITION
*----
  100       IF((K2.EQ.1).AND.(NCODE(1).EQ.4)) THEN
              KN(1,K2,K1,K0)=KN(2,NX,K1,K0)
            ENDIF
            IF((K2.EQ.NX).AND.(NCODE(2).EQ.4)) THEN
              KN(2,K2,K1,K0)=KN(1,1,K1,K0)
            ENDIF
            IF((K1.EQ.1).AND.(NCODE(3).EQ.4)) THEN
              KN(3,K2,K1,K0)=KN(2,K2,NY,K0)
            ENDIF
            IF((K1.EQ.NY).AND.(NCODE(4).EQ.4)) THEN
              KN(4,K2,K1,K0)=KN(1,K2,1,K0)
            ENDIF
            IF((K0.EQ.1).AND.(NCODE(5).EQ.4)) THEN
              KN(5,K2,K1,K0)=KN(6,K2,K1,NZ)
            ENDIF
            IF((K0.EQ.NZ).AND.(NCODE(6).EQ.4)) THEN
              KN(6,K2,K1,K0)=KN(5,K2,K1,1)
            ENDIF
*
            VOL(K2,K1,K0)=XX(K2,K1,K0)*YY(K2,K1,K0)*ZZ(K2,K1,K0)
          ENDDO
        ENDDO
      ENDDO
* END OF THE MAIN LOOP OVER NODES.
*
      IF(IMPX.GE.2) THEN
         WRITE(6,720) VOL(:NX,:NY,:NZ)
         WRITE(6,750)
         DO K0=1,NZ
           DO K1=1,NY
             DO K2=1,NX
               IF(MAT(K2,K1,K0).LE.0) CYCLE
               KEL=(K0-1)*NX*NY+(K1-1)*NX+K2
               WRITE (6,760) KEL,(KN(I,K2,K1,K0),I=1,6),
     1         (QFR(I,K2,K1,K0),I=1,6),(IQFR(I,K2,K1,K0),I=1,6)
            ENDDO
          ENDDO
        ENDDO
      ENDIF
*----
*  COMPUTE THE PERMUTATION VECTORS IPY AND IPZ
*----
      IF(IDIM.GE.2) THEN
         INX1=0
         DO K2=1,NX
           DO K0=1,NZ
             DO K1=1,NY
               INX2=IDL(K2,K1,K0)
               IF(INX2.LE.0) CYCLE
               INX1=INX1+1
               IPY(INX2)=INX1
             ENDDO
           ENDDO
         ENDDO
         IF(INX1.NE.IND) CALL XABORT('NSSDFC: FAILURE OF THE RENUMBERI'
     1   //'NG ALGORITHM(1)')
         IF(IDIM.EQ.3) THEN
            INX1=0
            DO K1=1,NY
              DO K2=1,NX
                DO K0=1,NZ
                  INX2=IDL(K2,K1,K0)
                  IF(INX2.LE.0) CYCLE
                  INX1=INX1+1
                  IPZ(INX2)=INX1
                ENDDO
              ENDDO
            ENDDO
            IF(INX1.NE.IND) CALL XABORT('NSSDFC: FAILURE OF THE RENUMB'
     1      //'ERING ALGORITHM(2)')
         ENDIF
      ENDIF
*----
*  COMPUTE VECTOR MUX
*----
      MUX(:LL4F)=1
      DO K0=1,NZ
        DO K1=1,NY
*         X- SIDE:
          DO K2=2,NX
            KEL=IDL(K2,K1,K0)
            IF(KEL.EQ.0) CYCLE
            KK1=IDL(K2-1,K1,K0)
            IF(KK1.GT.0) MUX(KEL)=MAX0(MUX(KEL),KEL-KK1+1)
          ENDDO
*         X+ SIDE:
          DO K2=1,NX-1
            KEL=IDL(K2,K1,K0)
            IF(KEL.EQ.0) CYCLE
            KK2=IDL(K2+1,K1,K0)
            IF(KK2.GT.0) MUX(KEL)=MAX0(MUX(KEL),KEL-KK2+1)
          ENDDO
        ENDDO
      ENDDO
*----
*  COMPUTE VECTOR MUY
*----
      IF(IDIM.GE.2) THEN
        MUY(:LL4F)=1
        DO K2=1,NX
          DO K0=1,NZ
*           Y- SIDE:
            DO K1=2,NY
              KEL=IDL(K2,K1,K0)
              IF(KEL.EQ.0) CYCLE
              INY1=IPY(KEL)
              KK3=IDL(K2,K1-1,K0)
              IF(KK3.GT.0) MUY(INY1)=MAX0(MUY(INY1),INY1-IPY(KK3)+1)
            ENDDO
*           Y- SIDE:
            DO K1=1,NY-1
              KEL=IDL(K2,K1,K0)
              IF(KEL.EQ.0) CYCLE
              INY1=IPY(KEL)
              KK4=IDL(K2,K1+1,K0)
              IF(KK4.GT.0) MUY(INY1)=MAX0(MUY(INY1),INY1-IPY(KK4)+1)
            ENDDO
          ENDDO
        ENDDO
      ELSE
        MUY(:LL4F)=0
      ENDIF
*----
*  COMPUTE VECTOR MUZ
*----
      IF(IDIM.EQ.3) THEN
        MUZ(:LL4F)=1
        DO K1=1,NY
          DO K2=1,NX
*           Z- SIDE:
            DO K0=2,NZ
              KEL=IDL(K2,K1,K0)
              IF(KEL.EQ.0) CYCLE
              INZ1=IPZ(KEL)
              KK5=IDL(K2,K1,K0-1)
              IF(KK5.GT.0) MUZ(INZ1)=MAX0(MUZ(INZ1),INZ1-IPZ(KK5)+1)
            ENDDO
*           Z+ SIDE:
            DO K0=1,NZ-1
              KEL=IDL(K2,K1,K0)
              IF(KEL.EQ.0) CYCLE
              INZ1=IPZ(KEL)
              KK6=IDL(K2,K1,K0+1)
              IF(KK6.GT.0) MUZ(INZ1)=MAX0(MUZ(INZ1),INZ1-IPZ(KK6)+1)
            ENDDO
          ENDDO
        ENDDO
      ELSE
        MUZ(:LL4F)=0
      ENDIF
*
      MUXMAX=0
      MUYMAX=0
      MUZMAX=0
      IIMAXX=0
      IIMAXY=0
      IIMAXZ=0
      DO I=1,LL4F
        MUXMAX=MAX(MUXMAX,MUX(I))
        MUYMAX=MAX(MUYMAX,MUY(I))
        MUZMAX=MAX(MUZMAX,MUZ(I))
        IBAND=MUX(I)
        IIMAXX=IIMAXX+IBAND
        MUX(I)=IIMAXX
        IIMAXX=IIMAXX+IBAND-1
        IMAX(I)=IIMAXX
        IBAND=MUY(I)
        IIMAXY=IIMAXY+IBAND
        MUY(I)=IIMAXY
        IIMAXY=IIMAXY+IBAND-1
        IMAY(I)=IIMAXY
        IBAND=MUZ(I)
        IIMAXZ=IIMAXZ+IBAND
        MUZ(I)=IIMAXZ
        IIMAXZ=IIMAXZ+IBAND-1
        IMAZ(I)=IIMAXZ
      ENDDO
      IF(IMPX.GT.0) WRITE (6,770) MUXMAX,MUYMAX,MUZMAX
      RETURN
*
  700 FORMAT(/46H NSSDFC: COARSE MESH FINITE DIFFERENCE METHOD.//3H NU,
     1 28HMBER OF NODES ALONG X AXIS =,I3/17X,14HALONG Y AXIS =,I3/
     2 17X,14HALONG Z AXIS =,I3)
  720 FORMAT(/17H VOLUMES PER NODE/(1X,1P,10E13.4))
  750 FORMAT(/22H NUMBERING OF UNKNOWNS/1X,21(1H-)//4X,4HNODE,5X,3HINT,
     1 26HERFACE NET CURRENT INDICES,28X,23HVOID BOUNDARY CONDITION)
  760 FORMAT(1X,I6,7X,6I8,6X,6F9.2/68X,6I9)
  770 FORMAT(/41H NSSDFC: MAXIMUM BANDWIDTH ALONG X AXIS =,I5/
     1 27X,14HALONG Y AXIS =,I5/27X,14HALONG Z AXIS =,I5)
      END