1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
|
subroutine NSSANM2(nunkn,nx,ny,ll4f,ll4x,ng,bndtl,npass,nmix,idl,kn,iqfr, &
& qfr,mat,xxx,yyy,keff,diff,sigr,chi,sigf,scat,fd,savg)
!
!-----------------------------------------------------------------------
!
!Purpose:
! Compute the ANM boundary fluxes and currents using a solution of
! one- and two-node relations in Cartesian 2D geometry.
!
!Copyright:
! Copyright (C) 2022 Ecole Polytechnique de Montreal
! This library is free software; you can redistribute it and/or
! modify it under the terms of the GNU Lesser General Public
! License as published by the Free Software Foundation; either
! version 2.1 of the License, or (at your option) any later version
!
!Author(s): A. Hebert
!
!Parameters: input
! nunkn number of unknowns per energy group.
! nx number of x-nodes in the nodal calculation.
! ny number of y-nodes in the nodal calculation.
! ll4f number of averaged flux unknowns.
! ll4x number of X-directed net currents.
! ng number of energy groups.
! bndtl set to 'flat' or 'quadratic'.
! npass number of transverse current iterations.
! nmix number of material mixtures in the nodal calculation.
! idl position of averaged fluxes in unknown vector.
! kn element-ordered interface net current unknown list.
! iqfr node-ordered physical albedo indices.
! qfr albedo function information.
! mat material mixture index in eacn node.
! xxx Cartesian coordinates along the X axis.
! yyy Cartesian coordinates along the Y axis.
! keff effective multiplication facctor.
! diff diffusion coefficients
! sigr removal cross sections.
! chi fission spectra.
! sigf nu times fission cross section.
! scat scattering cross section.
! fd discontinuity factors.
! savg nodal fluxes and net currents.
!
!Parameters: output
! savg nodal fluxes, boundary fluxes and net currents.
!
!-----------------------------------------------------------------------
!
!----
! subroutine arguments
!----
integer,intent(in) :: nunkn,nx,ny,ll4f,ll4x,ng,npass,nmix,idl(nx,ny),kn(6,nx,ny), &
& iqfr(6,nx,ny),mat(nx,ny)
real,intent(in) :: qfr(6,nx,ny,ng),xxx(nx+1),yyy(ny+1),keff,diff(nmix,ng), &
& sigr(nmix,ng),chi(nmix,ng),sigf(nmix,ng),scat(nmix,ng,ng),fd(nmix,4,ng,ng)
real, dimension(nunkn,ng),intent(inout) :: savg
character(len=12), intent(in) :: bndtl
!----
! local and allocatable arrays
!----
real :: xyz(4)
real, allocatable, dimension(:) :: work1,work2,work4,work5
real, allocatable, dimension(:,:) :: A,Lambda,work3
real(kind=8), allocatable, dimension(:,:) :: LLR
real(kind=8), allocatable, dimension(:,:,:,:) :: Lx,Rx,Ly,Ry
!----
! scratch storage allocation
!----
allocate(A(ng,ng+1),Lambda(ng,ng),LLR(ng,8*ng))
allocate(work1(ng),work2(ng),work3(ng,ng),work4(ng),work5(ng))
allocate(Lx(ng,8*ng,nx,ny),Rx(ng,8*ng,nx,ny))
allocate(Ly(ng,8*ng,nx,ny),Ry(ng,8*ng,nx,ny))
!----
! compute 2D ANM coupling matrices for each single node
!----
do j=1,ny
dely=yyy(j+1)-yyy(j)
do i=1,nx
delx=xxx(i+1)-xxx(i)
ibm=mat(i,j)
if(ibm == 0) cycle
work1(:ng)=diff(ibm,:ng)
work2(:ng)=sigr(ibm,:ng)
work3(:ng,:ng)=scat(ibm,:ng,:ng)
work4(:ng)=chi(ibm,:ng)
work5(:ng)=sigf(ibm,:ng)
!
kk1=iqfr(1,i,j)
kk2=iqfr(2,i,j)
xyz(2:3)=xxx(i:i+1)-xxx(i)
if(kk1 == -2) then
! reflection boundary condition
xyz(1)=2.0*xyz(2)-xyz(3)
else if(kk1 < 0) then
! zero/void/albedo boundary condition
xyz(1)=-99999.
else
! left neighbour
xyz(1)=xxx(i-1)-xxx(i)
endif
if(kk2 == -2) then
! reflection boundary condition
xyz(4)=2.0*xyz(3)-xyz(2)
else if(kk2 < 0) then
! zero/void/albedo boundary condition
xyz(4)=-99999.
else
! right neighbour
xyz(4)=xxx(i+2)-xxx(i)
endif
call NSSLR2(keff,ng,bndtl,xyz,dely,work1,work2,work3,work4,work5,Lx(1,1,i,j),Rx(1,1,i,j))
!
kk3=iqfr(3,i,j)
kk4=iqfr(4,i,j)
xyz(2:3)=yyy(j:j+1)-yyy(j)
if(kk3 == -2) then
! reflection boundary condition
xyz(1)=2.0*xyz(2)-xyz(3)
else if(kk3 < 0) then
! zero/void/albedo boundary condition
xyz(1)=-99999.
else
! left neighbour
xyz(1)=yyy(j-1)-yyy(j)
endif
if(kk4 == -2) then
! reflection boundary condition
xyz(4)=2.0*xyz(3)-xyz(2)
else if(kk4 < 0) then
! zero/void/albedo boundary condition
xyz(4)=-99999.0
else
! right neighbour
xyz(4)=yyy(j+2)-yyy(j)
endif
call NSSLR2(keff,ng,bndtl,xyz,delx,work1,work2,work3,work4,work5, &
& Ly(1,1,i,j),Ry(1,1,i,j))
enddo
enddo
!----
! perform transverse current iterations
!----
do ipass=1,npass
!----
! one- and two-node relations along X axis
!----
do j=1,ny
nxmin=1
do i=1,nx
if(mat(i,j) > 0) exit
nxmin=i+1
enddo
if(nxmin > nx) cycle
nxmax=nx
do i=nx,1,-1
if(mat(i,j) > 0) exit
nxmax=i-1
enddo
! one-node relation at left
ind1=idl(nxmin,j)
if(ind1 == 0) call XABORT('NSSANM2: invalid idl index.(1)')
iqf1=iqfr(1,nxmin,j)
jxm=kn(1,nxmin,j) ; jxp=kn(2,nxmin,j) ; jym=kn(3,nxmin,j) ; jyp=kn(4,nxmin,j)
jym_p=0 ; jyp_p=0
if(nxmin < nx) then
jym_p=kn(3,nxmin+1,j) ; jyp_p=kn(4,nxmin+1,j)
endif
A(:ng,:ng+1)=0.0
LLR(:ng,:8*ng)=0.0
if((iqf1 > 0).or.(iqf1 == -1)) then
! physical albedo
Lambda(:ng,:ng)=0.0
do ig=1,ng
Lambda(ig,ig)=qfr(1,nxmin,j,ig)
enddo
LLR(:ng,:8*ng)=matmul(Lambda(:ng,:ng),Lx(:ng,:8*ng,nxmin,j))
A(:ng,:ng)=-real(LLR(:ng,ng+1:2*ng),4)
do ig=1,ng
A(ig,ig)=-1.0+A(ig,ig)
enddo
else if(iqf1 == -2) then
! zero net current
do ig=1,ng
A(ig,ig)=1.0
enddo
else if(iqf1 == -3) then
! zero flux
LLR(:ng,:8*ng)=Lx(:ng,:8*ng,nxmin,j)
A(:ng,:ng)=real(-LLR(:ng,ng+1:2*ng),4)
else if(iqf1 == -4) then
call XABORT('NSSANM2: SYME boundary condition is not supported.(1)')
else
call XABORT('NSSANM2: illegal left X-boundary condition.')
endif
if(iqf1 /= -2) then
A(:ng,ng+1)=real(matmul(LLR(:ng,:ng),savg(ind1,:ng)),4)
do ig=1,ng
do jg=1,ng
if(jym /= 0) A(ig,ng+1)=A(ig,ng+1)+real(LLR(ig,3*ng+jg)*savg(5*ll4f+ll4x+jym,jg),4)
if(jym_p /= 0) A(ig,ng+1)=A(ig,ng+1)+real(LLR(ig,4*ng+jg)*savg(5*ll4f+ll4x+jym_p,jg),4)
if(jyp /= 0) A(ig,ng+1)=A(ig,ng+1)+real(LLR(ig,6*ng+jg)*savg(5*ll4f+ll4x+jyp,jg),4)
if(jyp_p /= 0) A(ig,ng+1)=A(ig,ng+1)+real(LLR(ig,7*ng+jg)*savg(5*ll4f+ll4x+jyp_p,jg),4)
enddo
enddo
endif
call ALSB(ng,1,A,ier,ng)
if(ier /= 0) call XABORT('NSSANM2: singular matrix.(1)')
savg(5*ll4f+jxm,:ng)=A(:ng,ng+1)
!
! two-node relations
do i=nxmin,nxmax-1
ind1=idl(i,j)
if(ind1 == 0) call XABORT('NSSANM2: invalid idl index.(2)')
ind2=idl(i+1,j)
if(ind2 == 0) call XABORT('NSSANM2: invalid idl index.(3)')
if(kn(1,i+1,j) /= kn(2,i,j)) call XABORT('NSSANM2: invalid kn index.(1)')
if(iqfr(2,i,j) /= 0) call XABORT('NSSANM2: invalid iqfr index.(1)')
if(iqfr(1,i+1,j) /= 0) call XABORT('NSSANM2: invalid iqfr index.(2)')
jxm=kn(1,i,j) ; jxp=kn(2,i,j) ; jym=kn(3,i,j) ; jyp=kn(4,i,j)
jym_m=0 ; jyp_m=0 ; jym_pp=0 ; jyp_pp=0
if((i == 1).and.(iqfr(1,1,j) == -2)) then
jym_m=kn(3,1,j) ; jyp_m=kn(4,1,j)
else if(i > 1) then
jym_m=kn(3,i-1,j) ; jyp_m=kn(4,i-1,j)
endif
jym_p=kn(3,i+1,j) ; jyp_p=kn(4,i+1,j)
if((i == nx-1).and.(iqfr(2,nx,j) == -2)) then
jym_pp=kn(3,nx,j) ; jyp_pp=kn(4,nx,j)
else if(i < nx-1) then
jym_pp=kn(3,i+2,j) ; jyp_pp=kn(4,i+2,j)
endif
!
A(:ng,:ng+1)=0.0
! node i
LLR(:ng,:8*ng)=matmul(fd(mat(i,j),2,:ng,:ng),Rx(:ng,:8*ng,i,j))
do ig=1,ng
A(:ng,ig)=A(:ng,ig)+real(LLR(:ng,ng+ig),4)
do jg=1,ng
A(ig,ng+1)=A(ig,ng+1)+real(-LLR(ig,jg)*savg(ind1,jg),4)
if(jym_m /= 0) A(ig,ng+1)=A(ig,ng+1)+real(-LLR(ig,2*ng+jg)*savg(5*ll4f+ll4x+jym_m,jg),4)
if(jym /= 0) A(ig,ng+1)=A(ig,ng+1)+real(-LLR(ig,3*ng+jg)*savg(5*ll4f+ll4x+jym,jg),4)
if(jym_p /= 0) A(ig,ng+1)=A(ig,ng+1)+real(-LLR(ig,4*ng+jg)*savg(5*ll4f+ll4x+jym_p,jg),4)
if(jyp_m /= 0) A(ig,ng+1)=A(ig,ng+1)+real(-LLR(ig,5*ng+jg)*savg(5*ll4f+ll4x+jyp_m,jg),4)
if(jyp /= 0) A(ig,ng+1)=A(ig,ng+1)+real(-LLR(ig,6*ng+jg)*savg(5*ll4f+ll4x+jyp,jg),4)
if(jyp_p /= 0) A(ig,ng+1)=A(ig,ng+1)+real(-LLR(ig,7*ng+jg)*savg(5*ll4f+ll4x+jyp_p,jg),4)
enddo
enddo
! node i+1
LLR(:ng,:8*ng)=matmul(fd(mat(i+1,j),1,:ng,:ng),Lx(:ng,:8*ng,i+1,j))
do ig=1,ng
A(:ng,ig)=A(:ng,ig)+real(-LLR(:ng,ng+ig),4)
do jg=1,ng
A(ig,ng+1)=A(ig,ng+1)+real(LLR(ig,jg)*savg(ind2,jg),4)
if(jym /= 0) A(ig,ng+1)=A(ig,ng+1)+real(LLR(ig,2*ng+jg)*savg(5*ll4f+ll4x+jym,jg),4)
if(jym_p /= 0) A(ig,ng+1)=A(ig,ng+1)+real(LLR(ig,3*ng+jg)*savg(5*ll4f+ll4x+jym_p,jg),4)
if(jym_pp /= 0) A(ig,ng+1)=A(ig,ng+1)+real(LLR(ig,4*ng+jg)*savg(5*ll4f+ll4x+jym_pp,jg),4)
if(jyp /= 0) A(ig,ng+1)=A(ig,ng+1)+real(LLR(ig,5*ng+jg)*savg(5*ll4f+ll4x+jyp,jg),4)
if(jyp_p /= 0) A(ig,ng+1)=A(ig,ng+1)+real(LLR(ig,6*ng+jg)*savg(5*ll4f+ll4x+jyp_p,jg),4)
if(jyp_pp /= 0) A(ig,ng+1)=A(ig,ng+1)+real(LLR(ig,7*ng+jg)*savg(5*ll4f+ll4x+jyp_pp,jg),4)
enddo
enddo
call ALSB(ng,1,A,ier,ng)
if(ier /= 0) call XABORT('NSSANM2: singular matrix.(2)')
if(jxp /= 0) savg(5*ll4f+jxp,:ng)=A(:ng,ng+1)
enddo
!
! one-node relation at right
ind1=idl(nxmax,j)
if(ind1 == 0) call XABORT('NSSANM2: invalid idl index.(4)')
iqf2=iqfr(2,nxmax,j)
jxm=kn(1,nxmax,j) ; jxp=kn(2,nxmax,j) ; jym=kn(3,nxmax,j) ; jyp=kn(4,nxmax,j)
jym_m=0 ; jyp_m=0
if(nxmax > 1) then
jym_m=kn(3,nxmax-1,j) ; jyp_m=kn(4,nxmax-1,j)
endif
A(:ng,:ng+1)=0.0
LLR(:ng,:8*ng)=0.0
if((iqf2 > 0).or.(iqf2 == -1)) then
! physical albedo
Lambda(:ng,:ng)=0.0
do ig=1,ng
Lambda(ig,ig)=qfr(2,nxmax,j,ig)
enddo
LLR(:ng,:8*ng)=matmul(Lambda(:ng,:ng),Rx(:ng,:8*ng,nxmax,j))
A(:ng,:ng)=real(LLR(:ng,ng+1:2*ng),4)
do ig=1,ng
A(ig,ig)=-1.0+A(ig,ig)
enddo
else if(iqf2 == -2) then
! zero net current
do ig=1,ng
A(ig,ig)=1.0
enddo
else if(iqf2 == -3) then
! zero flux
LLR(:ng,:8*ng)=Rx(:ng,:8*ng,nxmax,j)
A(:ng,:ng)=real(LLR(:ng,ng+1:2*ng),4)
else if(iqf2 == -4) then
call XABORT('NSSANM2: SYME boundary condition is not supported.(2)')
else
call XABORT('NSSANM2: illegal right X-boundary condition.')
endif
if(iqf2 /= -2) then
A(:ng,ng+1)=real(matmul(-LLR(:ng,:ng),savg(ind1,:ng)),4)
do ig=1,ng
do jg=1,ng
if(jym_m /= 0) A(ig,ng+1)=A(ig,ng+1)+real(-LLR(ig,2*ng+jg)*savg(5*ll4f+ll4x+jym_m,jg),4)
if(jym /= 0) A(ig,ng+1)=A(ig,ng+1)+real(-LLR(ig,3*ng+jg)*savg(5*ll4f+ll4x+jym,jg),4)
if(jyp_m /= 0) A(ig,ng+1)=A(ig,ng+1)+real(-LLR(ig,5*ng+jg)*savg(5*ll4f+ll4x+jyp_m,jg),4)
if(jyp /= 0) A(ig,ng+1)=A(ig,ng+1)+real(-LLR(ig,6*ng+jg)*savg(5*ll4f+ll4x+jyp,jg),4)
enddo
enddo
endif
call ALSB(ng,1,A,ier,ng)
if(ier /= 0) call XABORT('NSSANM2: singular matrix.(3)')
if(jxp /= 0) savg(5*ll4f+jxp,:ng)=A(:ng,ng+1)
enddo
!----
! one- and two-node relations along Y axis
!----
do i=1,nx
nymin=1
do j=1,ny
if(mat(i,j) > 0) exit
nymin=j+1
enddo
if(nymin > ny) cycle
nymax=ny
do j=ny,1,-1
if(mat(i,j) > 0) exit
nymax=j-1
enddo
! one-node relation at left
ind1=idl(i,nymin)
if(ind1 == 0) call XABORT('NSSANM2: invalid idl index.(5)')
iqf3=iqfr(3,i,nymin)
jxm=kn(1,i,nymin) ; jxp=kn(2,i,nymin) ; jym=kn(3,i,nymin) ; jyp=kn(4,i,nymin)
jxm_p=0 ; jxp_p=0
if(nymin < ny) then
jxm_p=kn(1,i,nymin+1) ; jxp_p=kn(2,i,nymin+1)
endif
A(:ng,:ng+1)=0.0
LLR(:ng,:8*ng)=0.0
if((iqf3 > 0).or.(iqf3 == -1)) then
! physical albedo
Lambda(:ng,:ng)=0.0
do ig=1,ng
Lambda(ig,ig)=qfr(3,i,nymin,ig)
enddo
LLR(:ng,:8*ng)=matmul(Lambda(:ng,:ng),Ly(:ng,:8*ng,i,nymin))
A(:ng,:ng)=-real(LLR(:ng,ng+1:2*ng),4)
do ig=1,ng
A(ig,ig)=-1.0+A(ig,ig)
enddo
else if(iqf3 == -2) then
! zero net current
do ig=1,ng
A(ig,ig)=1.0
enddo
else if(iqf3 == -3) then
! zero flux
LLR(:ng,:8*ng)=Ly(:ng,:8*ng,i,nymin)
A(:ng,:ng)=real(-LLR(:ng,ng+1:2*ng),4)
else if(iqf3 == -4) then
call XABORT('NSSANM2: SYME boundary condition is not supported.(3)')
else
call XABORT('NSSANM2: illegal left Y-boundary condition.')
endif
if(iqf3 /= -2) then
A(:ng,ng+1)=real(matmul(LLR(:ng,:ng),savg(ind1,:ng)),4)
do ig=1,ng
do jg=1,ng
if(jxm /= 0) A(ig,ng+1)=A(ig,ng+1)+real(LLR(ig,3*ng+jg)*savg(5*ll4f+jxm,jg),4)
if(jxm_p /= 0) A(ig,ng+1)=A(ig,ng+1)+real(LLR(ig,4*ng+jg)*savg(5*ll4f+jxm_p,jg),4)
if(jxp /= 0) A(ig,ng+1)=A(ig,ng+1)+real(LLR(ig,6*ng+jg)*savg(5*ll4f+jxp,jg),4)
if(jxp_p /= 0) A(ig,ng+1)=A(ig,ng+1)+real(LLR(ig,7*ng+jg)*savg(5*ll4f+jxp_p,jg),4)
enddo
enddo
endif
call ALSB(ng,1,A,ier,ng)
if(ier /= 0) call XABORT('NSSANM2: singular matrix.(4)')
if(jym /= 0) savg(5*ll4f+ll4x+jym,:ng)=A(:ng,ng+1)
!
! two-node relations
do j=nymin,nymax-1
ind1=idl(i,j)
if(ind1 == 0) call XABORT('NSSANM2: invalid idl index.(6)')
ind2=idl(i,j+1)
if(ind2 == 0) call XABORT('NSSANM2: invalid idl index.(7)')
if(kn(3,i,j+1) /= kn(4,i,j)) call XABORT('NSSANM2: invalid kn index.(2)')
if(iqfr(4,i,j) /= 0) call XABORT('NSSANM2: invalid iqfr index.(3)')
if(iqfr(3,i,j+1) /= 0) call XABORT('NSSANM2: invalid iqfr index.(4)')
jxm=kn(1,i,j) ; jxp=kn(2,i,j) ; jym=kn(3,i,j) ; jyp=kn(4,i,j)
jxm_m=0 ; jxp_m=0 ; jxm_pp=0 ; jxp_pp=0
if((j == 1).and.(iqfr(3,i,1) == -2)) then
jxm_m=kn(1,i,1) ; jxp_m=kn(2,i,1)
else if(j > 1) then
jxm_m=kn(1,i,j-1) ; jxp_m=kn(2,i,j-1)
endif
jxm_p=kn(1,i,j+1) ; jxp_p=kn(2,i,j+1)
if((j == ny-1).and.(iqfr(4,i,ny) == -2)) then
jxm_pp=kn(1,i,ny) ; jxp_pp=kn(2,i,ny)
else if(j < ny-1) then
jxm_pp=kn(1,i,j+2) ; jxp_pp=kn(2,i,j+2)
endif
!
A(:ng,:ng+1)=0.0
! node j
LLR(:ng,:8*ng)=matmul(fd(mat(i,j),4,:ng,:ng),Ry(:ng,:8*ng,i,j))
do ig=1,ng
A(:ng,ig)=A(:ng,ig)+real(LLR(:ng,ng+ig),4)
do jg=1,ng
A(ig,ng+1)=A(ig,ng+1)+real(-LLR(ig,jg)*savg(ind1,jg),4)
if(jxm_m /= 0) A(ig,ng+1)=A(ig,ng+1)+real(-LLR(ig,2*ng+jg)*savg(5*ll4f+jxm_m,jg),4)
if(jxm /= 0) A(ig,ng+1)=A(ig,ng+1)+real(-LLR(ig,3*ng+jg)*savg(5*ll4f+jxm,jg),4)
if(jxm_p /= 0) A(ig,ng+1)=A(ig,ng+1)+real(-LLR(ig,4*ng+jg)*savg(5*ll4f+jxm_p,jg),4)
if(jxp_m /= 0) A(ig,ng+1)=A(ig,ng+1)+real(-LLR(ig,5*ng+jg)*savg(5*ll4f+jxp_m,jg),4)
if(jxp /= 0) A(ig,ng+1)=A(ig,ng+1)+real(-LLR(ig,6*ng+jg)*savg(5*ll4f+jxp,jg),4)
if(jxp_p /= 0) A(ig,ng+1)=A(ig,ng+1)+real(-LLR(ig,7*ng+jg)*savg(5*ll4f+jxp_p,jg),4)
enddo
enddo
! node j+1
LLR(:ng,:8*ng)=matmul(fd(mat(i,j+1),3,:ng,:ng),Ly(:ng,:8*ng,i,j+1))
do ig=1,ng
A(:ng,ig)=A(:ng,ig)+real(-LLR(:ng,ng+ig),4)
do jg=1,ng
A(ig,ng+1)=A(ig,ng+1)+real(LLR(ig,jg)*savg(ind2,jg),4)
if(jxm /= 0) A(ig,ng+1)=A(ig,ng+1)+real(LLR(ig,2*ng+jg)*savg(5*ll4f+jxm,jg),4)
if(jxm_p /= 0) A(ig,ng+1)=A(ig,ng+1)+real(LLR(ig,3*ng+jg)*savg(5*ll4f+jxm_p,jg),4)
if(jxm_pp /= 0) A(ig,ng+1)=A(ig,ng+1)+real(LLR(ig,4*ng+jg)*savg(5*ll4f+jxm_pp,jg),4)
if(jxp /= 0) A(ig,ng+1)=A(ig,ng+1)+real(LLR(ig,5*ng+jg)*savg(5*ll4f+jxp,jg),4)
if(jxp_p /= 0) A(ig,ng+1)=A(ig,ng+1)+real(LLR(ig,6*ng+jg)*savg(5*ll4f+jxp_p,jg),4)
if(jxp_pp /= 0) A(ig,ng+1)=A(ig,ng+1)+real(LLR(ig,7*ng+jg)*savg(5*ll4f+jxp_pp,jg),4)
enddo
enddo
call ALSB(ng,1,A,ier,ng)
if(ier /= 0) call XABORT('NSSANM2: singular matrix.(5)')
if(jyp /= 0) savg(5*ll4f+ll4x+jyp,:ng)=A(:ng,ng+1)
enddo
!
! one-node relation at right
ind1=idl(i,nymax)
if(ind1 == 0) call XABORT('NSSANM2: invalid idl index.(8)')
iqf4=iqfr(4,i,nymax)
jxm=kn(1,i,nymax) ; jxp=kn(2,i,nymax) ; jym=kn(3,i,nymax) ; jyp=kn(4,i,nymax)
jxm_m=0 ; jxp_m=0
if(nymax > 1) then
jxm_m=kn(1,i,nymax-1) ; jxp_m=kn(2,i,nymax-1)
endif
A(:ng,:ng+1)=0.0
LLR(:ng,:8*ng)=0.0
if((iqf4 > 0).or.(iqf4 == -1)) then
! physical albedo
Lambda(:ng,:ng)=0.0
do ig=1,ng
Lambda(ig,ig)=qfr(4,i,nymax,ig)
enddo
LLR(:ng,:8*ng)=matmul(Lambda(:ng,:ng),Ry(:ng,:8*ng,i,nymax))
A(:ng,:ng)=real(LLR(:ng,ng+1:2*ng),4)
do ig=1,ng
A(ig,ig)=-1.0+A(ig,ig)
enddo
else if(iqf4 == -2) then
! zero net current
do ig=1,ng
A(ig,ig)=1.0
enddo
else if(iqf4 == -3) then
! zero flux
LLR(:ng,:8*ng)=Ry(:ng,:8*ng,i,nymax)
A(:ng,:ng)=real(LLR(:ng,ng+1:2*ng),4)
else if(iqf4 == -4) then
call XABORT('NSSANM2: SYME boundary condition is not supported.(4)')
else
call XABORT('NSSANM2: illegal right Y-boundary condition.')
endif
if(iqf4 /= -2) then
A(:ng,ng+1)=real(matmul(-LLR(:ng,:ng),savg(ind1,:ng)),4)
do ig=1,ng
do jg=1,ng
if(jxm_m /= 0) A(ig,ng+1)=A(ig,ng+1)+real(-LLR(ig,2*ng+jg)*savg(5*ll4f+jxm_m,jg),4)
if(jxm /= 0) A(ig,ng+1)=A(ig,ng+1)+real(-LLR(ig,3*ng+jg)*savg(5*ll4f+jxm,jg),4)
if(jxp_m /= 0) A(ig,ng+1)=A(ig,ng+1)+real(-LLR(ig,5*ng+jg)*savg(5*ll4f+jxp_m,jg),4)
if(jxp /= 0) A(ig,ng+1)=A(ig,ng+1)+real(-LLR(ig,6*ng+jg)*savg(5*ll4f+jxp,jg),4)
enddo
enddo
endif
call ALSB(ng,1,A,ier,ng)
if(ier /= 0) call XABORT('NSSANM2: singular matrix.(6)')
if(jyp /= 0) savg(5*ll4f+ll4x+jyp,:ng)=A(:ng,ng+1)
enddo
!----
! end of transverse current iterations
!----
enddo
!----
! compute boundary fluxes
!----
do j=1,ny
do i=1,nx
ind1=idl(i,j)
if(ind1 == 0) cycle
jxm=kn(1,i,j) ; jxp=kn(2,i,j) ; jym=kn(3,i,j) ; jyp=kn(4,i,j)
jym_m=0 ; jyp_m=0 ; jym_p=0 ; jyp_p=0
if((i == 1).and.(iqfr(1,1,j) == -2)) then
jym_m=kn(3,1,j) ; jyp_m=kn(4,1,j)
else if(i > 1) then
jym_m=kn(3,i-1,j) ; jyp_m=kn(4,i-1,j)
endif
if((i == nx).and.(iqfr(2,nx,j) == -2)) then
jym_p=kn(3,nx,j) ; jyp_p=kn(4,nx,j)
else if(i < nx) then
jym_p=kn(3,i+1,j) ; jyp_p=kn(4,i+1,j)
endif
! x- relations
savg(ll4f+ind1,:ng)=real(matmul(Lx(:ng,:ng,i,j),savg(ind1,:ng)),4)
if(jxm /= 0) savg(ll4f+ind1,:ng)=savg(ll4f+ind1,:ng)+ &
& real(matmul(Lx(:ng,ng+1:2*ng,i,j),savg(5*ll4f+jxm,:ng)),4)
if(jym_m /= 0) savg(ll4f+ind1,:ng)=savg(ll4f+ind1,:ng)+ &
& real(matmul(Lx(:ng,2*ng+1:3*ng,i,j),savg(5*ll4f+ll4x+jym_m,:ng)),4)
if(jym /= 0) savg(ll4f+ind1,:ng)=savg(ll4f+ind1,:ng)+ &
& real(matmul(Lx(:ng,3*ng+1:4*ng,i,j),savg(5*ll4f+ll4x+jym,:ng)),4)
if(jym_p /= 0) savg(ll4f+ind1,:ng)=savg(ll4f+ind1,:ng)+ &
& real(matmul(Lx(:ng,4*ng+1:5*ng,i,j),savg(5*ll4f+ll4x+jym_p,:ng)),4)
if(jyp_m /= 0) savg(ll4f+ind1,:ng)=savg(ll4f+ind1,:ng)+ &
& real(matmul(Lx(:ng,5*ng+1:6*ng,i,j),savg(5*ll4f+ll4x+jyp_m,:ng)),4)
if(jyp /= 0) savg(ll4f+ind1,:ng)=savg(ll4f+ind1,:ng)+ &
& real(matmul(Lx(:ng,6*ng+1:7*ng,i,j),savg(5*ll4f+ll4x+jyp,:ng)),4)
if(jyp_p /= 0) savg(ll4f+ind1,:ng)=savg(ll4f+ind1,:ng)+ &
& real(matmul(Lx(:ng,7*ng+1:8*ng,i,j),savg(5*ll4f+ll4x+jyp_p,:ng)),4)
!
! x+ relations
savg(2*ll4f+ind1,:ng)=real(matmul(Rx(:ng,:ng,i,j),savg(ind1,:ng)),4)
if(jxp /= 0) savg(2*ll4f+ind1,:ng)=savg(2*ll4f+ind1,:ng)+ &
& real(matmul(Rx(:ng,ng+1:2*ng,i,j),savg(5*ll4f+jxp,:ng)),4)
if(jym_m /= 0) savg(2*ll4f+ind1,:ng)=savg(2*ll4f+ind1,:ng)+ &
& real(matmul(Rx(:ng,2*ng+1:3*ng,i,j),savg(5*ll4f+ll4x+jym_m,:ng)),4)
if(jym /= 0) savg(2*ll4f+ind1,:ng)=savg(2*ll4f+ind1,:ng)+ &
& real(matmul(Rx(:ng,3*ng+1:4*ng,i,j),savg(5*ll4f+ll4x+jym,:ng)),4)
if(jym_p /= 0) savg(2*ll4f+ind1,:ng)=savg(2*ll4f+ind1,:ng)+ &
& real(matmul(Rx(:ng,4*ng+1:5*ng,i,j),savg(5*ll4f+ll4x+jym_p,:ng)),4)
if(jyp_m /= 0) savg(2*ll4f+ind1,:ng)=savg(2*ll4f+ind1,:ng)+ &
& real(matmul(Rx(:ng,5*ng+1:6*ng,i,j),savg(5*ll4f+ll4x+jyp_m,:ng)),4)
if(jyp /= 0) savg(2*ll4f+ind1,:ng)=savg(2*ll4f+ind1,:ng)+ &
& real(matmul(Rx(:ng,6*ng+1:7*ng,i,j),savg(5*ll4f+ll4x+jyp,:ng)),4)
if(jyp_p /= 0) savg(2*ll4f+ind1,:ng)=savg(2*ll4f+ind1,:ng)+ &
& real(matmul(Rx(:ng,7*ng+1:8*ng,i,j),savg(5*ll4f+ll4x+jyp_p,:ng)),4)
!
jxm_m=0 ; jxp_m=0 ; jxm_p=0 ; jxp_p=0
jxm=kn(1,i,j) ; jxp=kn(2,i,j) ; jym=kn(3,i,j) ; jyp=kn(4,i,j)
if((j == 1).and.(iqfr(3,i,1) == -2)) then
jxm_m=kn(1,i,1) ; jxp_m=kn(2,i,1)
else if(j > 1) then
jxm_m=kn(1,i,j-1) ; jxp_m=kn(2,i,j-1)
endif
if((j == ny).and.(iqfr(4,i,ny) == -2)) then
jxm_p=kn(1,i,ny) ; jxp_p=kn(2,i,ny)
else if(j < ny) then
jxm_p=kn(1,i,j+1) ; jxp_p=kn(2,i,j+1)
endif
! y- relations
savg(3*ll4f+ind1,:ng)=real(matmul(Ly(:ng,:ng,i,j),savg(ind1,:ng)),4)
if(jym /= 0) savg(3*ll4f+ind1,:ng)=savg(3*ll4f+ind1,:ng)+ &
& real(matmul(Ly(:ng,ng+1:2*ng,i,j),savg(5*ll4f+ll4x+jym,:ng)),4)
if(jxm_m /= 0) savg(3*ll4f+ind1,:ng)=savg(3*ll4f+ind1,:ng)+ &
& real(matmul(Ly(:ng,2*ng+1:3*ng,i,j),savg(5*ll4f+jxm_m,:ng)),4)
if(jxm /= 0) savg(3*ll4f+ind1,:ng)=savg(3*ll4f+ind1,:ng)+ &
& real(matmul(Ly(:ng,3*ng+1:4*ng,i,j),savg(5*ll4f+jxm,:ng)),4)
if(jxm_p /= 0) savg(3*ll4f+ind1,:ng)=savg(3*ll4f+ind1,:ng)+ &
& real(matmul(Ly(:ng,4*ng+1:5*ng,i,j),savg(5*ll4f+jxm_p,:ng)),4)
if(jxp_m /= 0) savg(3*ll4f+ind1,:ng)=savg(3*ll4f+ind1,:ng)+ &
& real(matmul(Ly(:ng,5*ng+1:6*ng,i,j),savg(5*ll4f+jxp_m,:ng)),4)
if(jxp /= 0) savg(3*ll4f+ind1,:ng)=savg(3*ll4f+ind1,:ng)+ &
& real(matmul(Ly(:ng,6*ng+1:7*ng,i,j),savg(5*ll4f+jxp,:ng)),4)
if(jxp_p /= 0) savg(3*ll4f+ind1,:ng)=savg(3*ll4f+ind1,:ng)+ &
& real(matmul(Ly(:ng,7*ng+1:8*ng,i,j),savg(5*ll4f+jxp_p,:ng)),4)
!
! y+ relations
savg(4*ll4f+ind1,:ng)=real(matmul(Ry(:ng,:ng,i,j),savg(ind1,:ng)),4)
if(jyp /= 0) savg(4*ll4f+ind1,:ng)=savg(4*ll4f+ind1,:ng)+ &
& real(matmul(Ry(:ng,ng+1:2*ng,i,j),savg(5*ll4f+ll4x+jyp,:ng)),4)
if(jxm_m /= 0) savg(4*ll4f+ind1,:ng)=savg(4*ll4f+ind1,:ng)+ &
& real(matmul(Ry(:ng,2*ng+1:3*ng,i,j),savg(5*ll4f+jxm_m,:ng)),4)
if(jxm /= 0) savg(4*ll4f+ind1,:ng)=savg(4*ll4f+ind1,:ng)+ &
& real(matmul(Ry(:ng,3*ng+1:4*ng,i,j),savg(5*ll4f+jxm,:ng)),4)
if(jxm_p /= 0) savg(4*ll4f+ind1,:ng)=savg(4*ll4f+ind1,:ng)+ &
& real(matmul(Ry(:ng,4*ng+1:5*ng,i,j),savg(5*ll4f+jxm_p,:ng)),4)
if(jxp_m /= 0) savg(4*ll4f+ind1,:ng)=savg(4*ll4f+ind1,:ng)+ &
& real(matmul(Ry(:ng,5*ng+1:6*ng,i,j),savg(5*ll4f+jxp_m,:ng)),4)
if(jxp /= 0) savg(4*ll4f+ind1,:ng)=savg(4*ll4f+ind1,:ng)+ &
& real(matmul(Ry(:ng,6*ng+1:7*ng,i,j),savg(5*ll4f+jxp,:ng)),4)
if(jxp_p /= 0) savg(4*ll4f+ind1,:ng)=savg(4*ll4f+ind1,:ng)+ &
& real(matmul(Ry(:ng,7*ng+1:8*ng,i,j),savg(5*ll4f+jxp_p,:ng)),4)
enddo
enddo
!----
! scratch storage deallocation
!----
deallocate(Ry,Ly,Rx,Lx)
deallocate(work5,work4,work3,work2,work1)
deallocate(LLR,Lambda,A)
end subroutine NSSANM2
|