1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
|
subroutine NSSANM1(nel,ng,nmix,iqfr,qfr,mat,xxx,keff,diff,sigr,chi,sigf,scat,fd,savg)
!
!-----------------------------------------------------------------------
!
!Purpose:
! Compute the ANM volume fluxes and boundary fluxes and currents using
! a solution of one- and two-node relations in Cartesian 1D geometry.
!
!Copyright:
! Copyright (C) 2022 Ecole Polytechnique de Montreal
! This library is free software; you can redistribute it and/or
! modify it under the terms of the GNU Lesser General Public
! License as published by the Free Software Foundation; either
! version 2.1 of the License, or (at your option) any later version
!
!Author(s): A. Hebert
!
!Parameters: input
! nel number of nodes in the nodal calculation.
! ng number of energy groups.
! nmix number of material mixtures in the nodal calculation.
! iqfr node-ordered physical albedo indices.
! qfr albedo function information.
! mat material mixture index in eacn node.
! xxx Cartesian coordinates along the X axis.
! keff effective multiplication facctor.
! diff diffusion coefficients
! sigr removal cross sections.
! chi fission spectra.
! sigf nu times fission cross section.
! scat scattering cross section.
! fd discontinuity factors
! savg nodal fluxes.
!
!Parameters: output
! savg boundary fluxes and currents.
!
!-----------------------------------------------------------------------
!
!----
! subroutine arguments
!----
integer,intent(in) :: nel,ng,nmix,iqfr(6,nel),mat(nel)
real,intent(in) :: qfr(6,nel,ng),xxx(nel+1),keff,diff(nmix,ng),sigr(nmix,ng), &
& chi(nmix,ng),sigf(nmix,ng),scat(nmix,ng,ng),fd(nmix,2,ng,ng)
real, dimension(4*nel+1,ng),intent(inout) :: savg
!----
! allocatable arrays
!----
real, allocatable, dimension(:) :: work1,work2,work4,work5
real, allocatable, dimension(:,:) :: A,B,Lambda,work3
real(kind=8), allocatable, dimension(:,:,:) :: Lx,Rx
!----
! scratch storage allocation
!----
allocate(A(ng,ng+1),B(ng,ng),Lambda(ng,ng))
allocate(work1(ng),work2(ng),work3(ng,ng),work4(ng),work5(ng))
allocate(Lx(ng,2*ng,nel),Rx(ng,2*ng,nel))
!
! compute nodal coefficients
do iel=1,nel
ibm=mat(iel)
if(ibm == 0) cycle
work1(:ng)=diff(ibm,:ng)
work2(:ng)=sigr(ibm,:ng)
work3(:ng,:ng)=scat(ibm,:ng,:ng)
work4(:ng)=chi(ibm,:ng)
work5(:ng)=sigf(ibm,:ng)
delx=xxx(iel+1)-xxx(iel)
call NSSLR1(keff,ng,delx,work1,work2,work3,work4,work5, &
& Lx(1,1,iel),Rx(1,1,iel))
enddo
!----
! compute boundary currents
! left one-node relation
!----
A(:ng,:ng+1)=0.0
if((iqfr(1,1) > 0).or.(iqfr(1,1) == -1)) then
! physical albedo
Lambda(:ng,:ng)=0.0
do ig=1,ng
Lambda(ig,ig)=qfr(1,1,ig)
enddo
A(:ng,:ng)=real(matmul(Lambda(:ng,:ng),Lx(:ng,ng+1:2*ng,1)),4)
B(:ng,:ng)=real(matmul(Lambda(:ng,:ng),Lx(:ng,:ng,1)),4)
do ig=1,ng
A(ig,ig)=1.0+A(ig,ig)
enddo
A(:ng,ng+1)=-matmul(B(:ng,:ng),savg(1,:ng))
else if(iqfr(1,1) == -2) then
! zero net current
do ig=1,ng
A(ig,ig)=1.0
enddo
else if(iqfr(1,1) == -3) then
! zero flux
A(:ng,:ng)=real(Lx(:ng,ng+1:2*ng,1),4)
A(:ng,ng+1)=real(-matmul(Lx(:ng,:ng,1),savg(1,:ng)),4)
else
call XABORT('NSSANM1: illegal left boundary condition.')
endif
call ALSB(ng,1,A,ier,ng)
if(ier /= 0) call XABORT('NSSANM1: singular matrix.(1)')
savg(3*nel+1,:ng)=A(:ng,ng+1)
! two-node relations
do i=2,nel
A(:ng,:ng)=real(matmul(fd(mat(i-1),2,:ng,:ng),Rx(:ng,ng+1:2*ng,i-1))- &
& matmul(fd(mat(i),1,:ng,:ng),Lx(:ng,ng+1:2*ng,i)),4)
A(:ng,ng+1)=-real(matmul(matmul(fd(mat(i-1),2,:ng,:ng),Rx(:ng,:ng,i-1)),savg(i-1,:ng))- &
& matmul(matmul(fd(mat(i),1,:ng,:ng),Lx(:ng,:ng,i)),savg(i,:ng)),4)
call ALSB(ng,1,A,ier,ng)
if(ier /= 0) call XABORT('NSSANM1: singular matrix.(2)')
savg(3*nel+i,:ng)=A(:ng,ng+1)
enddo
! right one-node relation
if((iqfr(2,nel) > 0).or.(iqfr(2,nel) == -1)) then
! physical albedo
Lambda(:ng,:ng)=0.0
do ig=1,ng
Lambda(ig,ig)=qfr(2,nel,ig)
enddo
A(:ng,:ng)=real(matmul(Lambda(:ng,:ng),Rx(:ng,ng+1:2*ng,nel)),4)
B(:ng,:ng)=real(matmul(Lambda(:ng,:ng),Rx(:ng,:ng,nel)),4)
do ig=1,ng
A(ig,ig)=-1.0+A(ig,ig)
enddo
A(:ng,ng+1)=-matmul(B(:ng,:ng),savg(nel,:ng))
else if(iqfr(2,nel) == -2) then
! zero net current
do ig=1,ng
A(2*nel*ng+ig,2*nel*ng+ig)=1.0
enddo
else if(iqfr(2,nel) == -3) then
! zero flux
A(:ng,:ng)=real(Rx(:ng,ng+1:2*ng,nel),4)
A(:ng,ng+1)=real(-matmul(Rx(:ng,:ng,nel),savg(nel,:ng)),4)
else
call XABORT('NSSANM1: illegal right boundary condition.')
endif
call ALSB(ng,1,A,ier,ng)
if(ier /= 0) call XABORT('NSSANM1: singular matrix.(3)')
savg(4*nel+1,:ng)=A(:ng,ng+1)
!----
! compute boundary fluxes
!----
do i=1,nel
savg(nel+i,:ng)=real(matmul(Lx(:ng,:ng,i),savg(i,:ng))+ &
& matmul(Lx(:ng,ng+1:2*ng,i),savg(3*nel+i,:ng)),4)
savg(2*nel+i,:ng)=real(matmul(Rx(:ng,:ng,i),savg(i,:ng))+ &
& matmul(Rx(:ng,ng+1:2*ng,i),savg(3*nel+i+1,:ng)),4)
enddo
!----
! scratch storage deallocation
!----
deallocate(Rx,Lx)
deallocate(work5,work4,work3,work2,work1)
deallocate(Lambda,B,A)
end subroutine NSSANM1
|