1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
|
*DECK MTLDLS
SUBROUTINE MTLDLS(NAMP,IPTRK,IPSYS,LL4,ITY,F1)
*
*-----------------------------------------------------------------------
*
*Purpose:
* LCM driver for the solution of a linear system after LDL(t)
* factorization.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* NAMP name of the coefficient matrix.
* IPTRK L_TRACK pointer to the tracking information.
* IPSYS L_SYSTEM pointer to system matrices.
* LL4 order of the matrix.
* ITY type of coefficient matrix (1: Bivac; 2: classical Trivac;
* 3: Raviart-Thomas; 11: SPN/Bivac; 13: SPN/Raviart-Thomas).
* F1 right-hand side of the linear system.
*
*Parameters: output
* F1 solution of the linear system.
*
*-----------------------------------------------------------------------
*
USE GANLIB
*----
* SUBROUTINE ARGUMENTS
*----
TYPE(C_PTR) IPTRK,IPSYS
CHARACTER NAMP*(*)
INTEGER LL4,ITY
REAL F1(LL4)
*----
* LOCAL VARIABLES
*----
PARAMETER (NSTATE=40)
CHARACTER NAMT*12,TEXT12*12
INTEGER ITP(NSTATE),ASS_LEN
LOGICAL LMU,LMUW,LMUX,LMUY,LMUZ,DIAG
REAL, DIMENSION(:), ALLOCATABLE :: GAR
TYPE(C_PTR) MU_PTR,IP_PTR,IPV_PTR,NBL_PTR,LBL_PTR
TYPE(C_PTR) ASS_PTR,DGV_PTR
INTEGER, DIMENSION(:), ALLOCATABLE :: IPB
INTEGER, DIMENSION(:), POINTER :: MU,IP,IPV,NBL,LBL
REAL, DIMENSION(:), POINTER :: ASS,DGV
*
*-----------------------------------------------------------------------
*
* INFORMATION RECOVERED FROM XSM OR LCM (NON-SPLITTED MATRIX):
* NAMP : COEFFICIENT MATRIX.
* 'I'//NAMP : FACTORIZED COEFFICIENT MATRIX.
* 'MU' : POSITION OF DIAGONAL ELEMENT IN COEFFICIENT MATRIX.
*
* INFORMATION RECOVERED FROM XSM OR LCM (SPLITTED MATRIX):
* 'W_'//NAMP 'X_'//NAMP 'Y_'//NAMP 'Z_'//NAMP : W-, X-, Y- AND Z-
* ORIENTED MATRIX COMPONENTS.
* 'WI'//NAMP 'XI'//NAMP 'YI'//NAMP 'ZI'//NAMP : W-, X-, Y- AND Z-
* ORIENTED FACTORIZED MATRIX COMPONENTS.
*
* SCALAR INFORMATION RECOVERED FROM LCM.
* 'MUW' 'MUX' 'MUY' 'MUZ' : POSITION OF DIAGONAL ELEMENT IN W-, X-, Y-
* OR Z-ORIENTED MATRIX COMPONENTS.
* 'IPW' 'IPX' 'IPY' 'IPZ' : PERMUTATION INFORMATION FOR W-, X-, Y- OR
* Z-ORIENTED MATRIX COMPONENTS.
*
* SUPERVECTORIZATION INFORMATION RECOVERED FROM LCM.
* 'WD'//NAMP 'XD'//NAMP 'YD'//NAMP 'ZD'//NAMP : DIAGONAL ELEMENTS FOR
* W-, X-, Y- AND Z-ORIENTED MATRIX COMPONENTS.
* 'LL4VW' 'LL4VX' 'LL4VY' 'LL4VZ' : ORDER OF THE REORDERED W-, X-, Y-
* AND Z-ORIENTED MATRIX COMPONENTS.
* 'MUVW' 'MUVX' 'MUVY' 'MUVZ' : POSITION OF DIAGONAL ELEMENT IN W-, X-,
* Y-OR Z-ORIENTED MATRIX COMPONENTS.
* 'IPVW' 'IPVX' 'IPVY' 'IPVZ' : PERMUTATION INFORMATION FOR W-, X-, Y-
* OR Z-ORIENTED MATRIX COMPONENTS.
* 'NBLW' 'NBLX' 'NBLY' 'NBLZ' : NUMBER OF LINEAR SYSTEMS IN EACH SUPER-
* VECTORIAL UNKNOWN GROUP.
* 'LBLW' 'LBLX' 'LBLY' 'LBLZ' : ORDER OF LINEAR SYSTEMS IN EACH SUPER-
* VECTORIAL UNKNOWN GROUP.
*
*-----------------------------------------------------------------------
*
IF(ITY.EQ.1) THEN
* BIVAC TRACKING.
ISEG=0
ELSE IF(ITY.EQ.2) THEN
* CLASSICAL TRIVAC TRACKING.
CALL LCMGET(IPTRK,'STATE-VECTOR',ITP)
ISEG=ITP(17)
LTSW=ITP(19)
ELSE IF(ITY.EQ.3) THEN
* RAVIART-THOMAS/DIFFUSION TRIVAC TRACKING.
ALLOCATE(GAR(LL4))
GAR(:LL4)=F1(:LL4)
F1(:LL4)=0.0
CALL FLDTRS(NAMP,IPTRK,IPSYS,LL4,GAR,F1,1)
DEALLOCATE(GAR)
RETURN
ELSE IF(ITY.EQ.11) THEN
* SIMPLIFIED PN BIVAC TRACKING.
CALL LCMGET(IPSYS,'STATE-VECTOR',ITP)
NBMIX=ITP(7)
NAN=ITP(8)
IF(NAN.EQ.0) CALL XABORT('MTLDLS: SPN-ONLY ALGORITHM(1).')
CALL FLDBSS(NAMP,IPTRK,IPSYS,LL4,NBMIX,NAN,F1,1)
RETURN
ELSE IF(ITY.EQ.13) THEN
* RAVIART-THOMAS/SIMPLIFIED PN TRIVAC TRACKING.
CALL LCMGET(IPSYS,'STATE-VECTOR',ITP)
NBMIX=ITP(7)
NAN=ITP(8)
IF(NAN.EQ.0) CALL XABORT('MTLDLS: SPN-ONLY ALGORITHM(2).')
ALLOCATE(GAR(LL4))
GAR(:LL4)=F1(:LL4)
F1(:LL4)=0.0
CALL FLDSPN(NAMP,IPTRK,IPSYS,LL4,NBMIX,NAN,GAR,F1,1)
DEALLOCATE(GAR)
RETURN
ENDIF
*
CALL LCMLEN(IPTRK,'MU',IDUM,ITYLCM)
LMU=(IDUM.NE.0).AND.(ITYLCM.EQ.1)
CALL LCMLEN(IPTRK,'MUW',IDUM,ITYLCM)
LMUW=(IDUM.NE.0).AND.(ITYLCM.EQ.1)
CALL LCMLEN(IPTRK,'MUX',IDUM,ITYLCM)
LMUX=(IDUM.NE.0).AND.(ITYLCM.EQ.1)
CALL LCMLEN(IPTRK,'MUY',IDUM,ITYLCM)
LMUY=(IDUM.NE.0).AND.(ITYLCM.EQ.1)
CALL LCMLEN(IPTRK,'MUZ',IDUM,ITYLCM)
LMUZ=(IDUM.NE.0).AND.(ITYLCM.EQ.1)
DIAG=LMUY.AND.(.NOT.LMUX)
*
NAMT=NAMP
IF(LMU) THEN
CALL LCMLEN(IPTRK,'MU',LL4TS,ITYLCM)
IF(LL4.NE.LL4TS) CALL XABORT('MTLDLS: INVALID LL4(1).')
CALL LCMGPD(IPTRK,'MU',MU_PTR)
CALL LCMGPD(IPSYS,'I'//NAMT,ASS_PTR)
CALL C_F_POINTER(MU_PTR,MU,(/ LL4 /))
CALL C_F_POINTER(ASS_PTR,ASS,(/ MU(LL4) /))
CALL ALLDLS(LL4,MU,ASS,F1(1))
ELSE IF(ISEG.EQ.0) THEN
* SCALAR SOLUTION FOR A W- OR X-ORIENTED LINEAR SYSTEM.
TEXT12=' '
IF(LMUW) THEN
TEXT12='WI'//NAMT(:10)
CALL LCMGPD(IPTRK,'MUW',MU_PTR)
CALL LCMGPD(IPTRK,'IPW',IP_PTR)
CALL LCMLEN(IPTRK,'IPW',LL4TS,ITYLCM)
ELSE IF(DIAG) THEN
TEXT12='YI'//NAMT(:10)
CALL LCMGPD(IPTRK,'MUY',MU_PTR)
CALL LCMGPD(IPTRK,'IPX',IP_PTR)
CALL LCMLEN(IPTRK,'IPX',LL4TS,ITYLCM)
ELSE
TEXT12='XI'//NAMT(:10)
CALL LCMGPD(IPTRK,'MUX',MU_PTR)
CALL LCMGPD(IPTRK,'IPX',IP_PTR)
CALL LCMLEN(IPTRK,'IPX',LL4TS,ITYLCM)
ENDIF
IF(LL4.NE.LL4TS) CALL XABORT('MTLDLS: INVALID LL4(2).')
CALL C_F_POINTER(MU_PTR,MU,(/ LL4 /))
CALL C_F_POINTER(IP_PTR,IP,(/ LL4 /))
ALLOCATE(GAR(LL4))
DO 10 I=1,LL4
GAR(IP(I))=F1(I)
10 CONTINUE
CALL LCMGPD(IPSYS,TEXT12,ASS_PTR)
CALL C_F_POINTER(ASS_PTR,ASS,(/ MU(LL4) /))
CALL ALLDLS(LL4,MU,ASS,GAR(1))
DO 20 I=1,LL4
F1(I)=GAR(IP(I))
20 CONTINUE
IF(LMUW) THEN
* SCALAR SOLUTION FOR A X-ORIENTED LINEAR SYSTEM.
CALL LCMGPD(IPTRK,'MUX',MU_PTR)
CALL LCMGPD(IPTRK,'IPX',IP_PTR)
CALL C_F_POINTER(MU_PTR,MU,(/ LL4 /))
CALL C_F_POINTER(IP_PTR,IP,(/ LL4 /))
CALL LCMGPD(IPSYS,'X_'//NAMT,ASS_PTR)
CALL C_F_POINTER(ASS_PTR,ASS,(/ MU(LL4) /))
DO 30 I=1,LL4
II=IP(I)
GAR(II)=F1(I)*ASS(MU(II))
30 CONTINUE
CALL LCMGPD(IPSYS,'XI'//NAMT,ASS_PTR)
CALL C_F_POINTER(ASS_PTR,ASS,(/ MU(LL4) /))
CALL ALLDLS(LL4,MU,ASS,GAR(1))
DO 50 I=1,LL4
F1(I)=GAR(IP(I))
50 CONTINUE
ENDIF
IF(LMUY) THEN
* SCALAR SOLUTION FOR A Y-ORIENTED LINEAR SYSTEM.
CALL LCMGPD(IPTRK,'MUY',MU_PTR)
CALL LCMGPD(IPTRK,'IPY',IP_PTR)
CALL C_F_POINTER(MU_PTR,MU,(/ LL4 /))
CALL C_F_POINTER(IP_PTR,IP,(/ LL4 /))
CALL LCMGPD(IPSYS,'Y_'//NAMT,ASS_PTR)
CALL C_F_POINTER(ASS_PTR,ASS,(/ MU(LL4) /))
DO 60 I=1,LL4
II=IP(I)
GAR(II)=F1(I)*ASS(MU(II))
60 CONTINUE
CALL LCMGPD(IPSYS,'YI'//NAMT,ASS_PTR)
CALL C_F_POINTER(ASS_PTR,ASS,(/ MU(LL4) /))
CALL ALLDLS(LL4,MU,ASS,GAR(1))
DO 80 I=1,LL4
F1(I)=GAR(IP(I))
80 CONTINUE
ENDIF
IF(LMUZ) THEN
* SCALAR SOLUTION FOR A Z-ORIENTED LINEAR SYSTEM.
CALL LCMGPD(IPTRK,'MUZ',MU_PTR)
CALL LCMGPD(IPTRK,'IPZ',IP_PTR)
CALL C_F_POINTER(MU_PTR,MU,(/ LL4 /))
CALL C_F_POINTER(IP_PTR,IP,(/ LL4 /))
CALL LCMGPD(IPSYS,'Z_'//NAMT,ASS_PTR)
CALL C_F_POINTER(ASS_PTR,ASS,(/ MU(LL4) /))
DO 90 I=1,LL4
II=IP(I)
GAR(II)=F1(I)*ASS(MU(II))
90 CONTINUE
CALL LCMGPD(IPSYS,'ZI'//NAMT,ASS_PTR)
CALL C_F_POINTER(ASS_PTR,ASS,(/ MU(LL4) /))
CALL ALLDLS(LL4,MU,ASS,GAR(1))
DO 110 I=1,LL4
F1(I)=GAR(IP(I))
110 CONTINUE
ENDIF
DEALLOCATE(GAR)
ELSE IF(ISEG.GT.0) THEN
* SUPERVECTORIAL SOLUTION FOR A W- OR X-ORIENTED LINEAR SYSTEM.
IF(LMUW) THEN
CALL LCMGET(IPTRK,'LL4VW',LL4V)
CALL LCMGPD(IPTRK,'MUVW',MU_PTR)
TEXT12='WI'//NAMT(:10)
CALL LCMLEN(IPTRK,'IPW',LL4TS,ITYLCM)
IF(LL4.NE.LL4TS) CALL XABORT('MTLDLS: INVALID LL4(5).')
CALL LCMGPD(IPTRK,'IPW',IP_PTR)
CALL LCMLEN(IPTRK,'IPVW',IPV_LEN,ITYLCM)
CALL LCMGPD(IPTRK,'IPVW',IPV_PTR)
CALL LCMLEN(IPTRK,'NBLW',NBL_LEN,ITYLCM)
CALL LCMGPD(IPTRK,'NBLW',NBL_PTR)
CALL LCMGPD(IPTRK,'LBLW',LBL_PTR)
ELSE IF(DIAG) THEN
CALL LCMGET(IPTRK,'LL4VY',LL4V)
CALL LCMGPD(IPTRK,'MUVY',MU_PTR)
TEXT12='YI'//NAMT(:10)
CALL LCMLEN(IPTRK,'IPX',LL4TS,ITYLCM)
IF(LL4.NE.LL4TS) CALL XABORT('MTLDLS: INVALID LL4(6).')
CALL LCMGPD(IPTRK,'IPX',IP_PTR)
CALL LCMLEN(IPTRK,'IPVY',IPV_LEN,ITYLCM)
CALL LCMGPD(IPTRK,'IPVY',IPV_PTR)
CALL LCMLEN(IPTRK,'NBLY',NBL_LEN,ITYLCM)
CALL LCMGPD(IPTRK,'NBLY',NBL_PTR)
CALL LCMGPD(IPTRK,'LBLY',LBL_PTR)
ELSE
CALL LCMGET(IPTRK,'LL4VX',LL4V)
CALL LCMGPD(IPTRK,'MUVX',MU_PTR)
TEXT12='XI'//NAMT(:10)
CALL LCMLEN(IPTRK,'IPX',LL4TS,ITYLCM)
IF(LL4.NE.LL4TS) CALL XABORT('MTLDLS: INVALID LL4(7).')
CALL LCMGPD(IPTRK,'IPX',IP_PTR)
CALL LCMLEN(IPTRK,'IPVX',IPV_LEN,ITYLCM)
CALL LCMGPD(IPTRK,'IPVX',IPV_PTR)
CALL LCMLEN(IPTRK,'NBLX',NBL_LEN,ITYLCM)
CALL LCMGPD(IPTRK,'NBLX',NBL_PTR)
CALL LCMGPD(IPTRK,'LBLX',LBL_PTR)
ENDIF
CALL C_F_POINTER(MU_PTR,MU,(/ LL4V/ISEG /))
CALL C_F_POINTER(IP_PTR,IP,(/ LL4 /))
CALL C_F_POINTER(IPV_PTR,IPV,(/ IPV_LEN /))
CALL C_F_POINTER(NBL_PTR,NBL,(/ NBL_LEN /))
CALL C_F_POINTER(LBL_PTR,LBL,(/ NBL_LEN /))
ALLOCATE(IPB(LL4),GAR(LL4V))
DO 120 I=1,LL4
IPB(I)=IPV(IP(I))
120 CONTINUE
GAR(:LL4V)=0.0
DO 130 I=1,LL4
GAR(IPB(I))=F1(I)
130 CONTINUE
CALL LCMLEN(IPSYS,TEXT12,ASS_LEN,ITYLCM)
CALL LCMGPD(IPSYS,TEXT12,ASS_PTR)
CALL C_F_POINTER(ASS_PTR,ASS,(/ ASS_LEN /))
CALL ALVDLS(LTSW,MU,ASS,GAR,ISEG,NBL_LEN,NBL,LBL)
DO 140 I=1,LL4
F1(I)=GAR(IPB(I))
140 CONTINUE
DEALLOCATE(GAR,IPB)
IF(LMUW) THEN
* SUPERVECTORIAL SOLUTION FOR A X-ORIENTED LINEAR SYSTEM.
CALL LCMGET(IPTRK,'LL4VX',LL4V)
CALL LCMGPD(IPTRK,'MUVX',MU_PTR)
CALL C_F_POINTER(MU_PTR,MU,(/ LL4V/ISEG /))
CALL LCMLEN(IPTRK,'IPX',LL4,ITYLCM)
CALL LCMGPD(IPTRK,'IPX',IP_PTR)
CALL LCMLEN(IPTRK,'IPVX',IPV_LEN,ITYLCM)
CALL LCMGPD(IPTRK,'IPVX',IPV_PTR)
CALL C_F_POINTER(IP_PTR,IP,(/ LL4 /))
CALL C_F_POINTER(IPV_PTR,IPV,(/ IPV_LEN /))
CALL LCMLEN(IPTRK,'NBLX',NBL_LEN,ITYLCM)
CALL LCMGPD(IPTRK,'NBLX',NBL_PTR)
CALL LCMGPD(IPTRK,'LBLX',LBL_PTR)
CALL C_F_POINTER(NBL_PTR,NBL,(/ NBL_LEN /))
CALL C_F_POINTER(LBL_PTR,LBL,(/ NBL_LEN /))
ALLOCATE(IPB(LL4),GAR(LL4V))
DO 150 I=1,LL4
IPB(I)=IPV(IP(I))
150 CONTINUE
GAR(:LL4V)=0.0
DO 160 I=1,LL4
GAR(IPB(I))=F1(I)
160 CONTINUE
CALL LCMLEN(IPSYS,'XI'//NAMT,ASS_LEN,ITYLCM)
CALL LCMGPD(IPSYS,'XI'//NAMT,ASS_PTR)
CALL LCMGPD(IPSYS,'XD'//NAMT,DGV_PTR)
CALL C_F_POINTER(ASS_PTR,ASS,(/ ASS_LEN /))
CALL C_F_POINTER(DGV_PTR,DGV,(/ LL4V /))
CDIR$ IVDEP
DO 170 I=1,LL4V
GAR(I)=GAR(I)*DGV(I)
170 CONTINUE
CALL ALVDLS(LTSW,MU,ASS,GAR,ISEG,NBL_LEN,NBL,LBL)
DO 190 I=1,LL4
F1(I)=GAR(IPB(I))
190 CONTINUE
DEALLOCATE(GAR,IPB)
ENDIF
IF(LMUY) THEN
* SUPERVECTORIAL SOLUTION FOR A Y-ORIENTED LINEAR SYSTEM.
CALL LCMGET(IPTRK,'LL4VY',LL4V)
CALL LCMGPD(IPTRK,'MUVY',MU_PTR)
CALL C_F_POINTER(MU_PTR,MU,(/ LL4V/ISEG /))
CALL LCMLEN(IPTRK,'IPY',LL4,ITYLCM)
CALL LCMGPD(IPTRK,'IPY',IP_PTR)
CALL LCMLEN(IPTRK,'IPVY',IPV_LEN,ITYLCM)
CALL LCMGPD(IPTRK,'IPVY',IPV_PTR)
CALL C_F_POINTER(IP_PTR,IP,(/ LL4 /))
CALL C_F_POINTER(IPV_PTR,IPV,(/ IPV_LEN /))
CALL LCMLEN(IPTRK,'NBLY',NBL_LEN,ITYLCM)
CALL LCMGPD(IPTRK,'NBLY',NBL_PTR)
CALL LCMGPD(IPTRK,'LBLY',LBL_PTR)
CALL C_F_POINTER(NBL_PTR,NBL,(/ NBL_LEN /))
CALL C_F_POINTER(LBL_PTR,LBL,(/ NBL_LEN /))
ALLOCATE(IPB(LL4),GAR(LL4V))
DO 200 I=1,LL4
IPB(I)=IPV(IP(I))
200 CONTINUE
GAR(:LL4V)=0.0
DO 210 I=1,LL4
GAR(IPB(I))=F1(I)
210 CONTINUE
CALL LCMLEN(IPSYS,'YI'//NAMT,ASS_LEN,ITYLCM)
CALL LCMGPD(IPSYS,'YI'//NAMT,ASS_PTR)
CALL LCMGPD(IPSYS,'YD'//NAMT,DGV_PTR)
CALL C_F_POINTER(ASS_PTR,ASS,(/ ASS_LEN /))
CALL C_F_POINTER(DGV_PTR,DGV,(/ LL4V /))
CDIR$ IVDEP
DO 220 I=1,LL4V
GAR(I)=GAR(I)*DGV(I)
220 CONTINUE
CALL ALVDLS(LTSW,MU,ASS,GAR,ISEG,NBL_LEN,NBL,LBL)
DO 240 I=1,LL4
F1(I)=GAR(IPB(I))
240 CONTINUE
DEALLOCATE(GAR,IPB)
ENDIF
IF(LMUZ) THEN
* SUPERVECTORIAL SOLUTION FOR A Z-ORIENTED LINEAR SYSTEM.
CALL LCMGET(IPTRK,'LL4VZ',LL4V)
CALL LCMGPD(IPTRK,'MUVZ',MU_PTR)
CALL C_F_POINTER(MU_PTR,MU,(/ LL4V/ISEG /))
CALL LCMLEN(IPTRK,'IPZ',LL4,ITYLCM)
CALL LCMGPD(IPTRK,'IPZ',IP_PTR)
CALL LCMLEN(IPTRK,'IPVZ',IPV_LEN,ITYLCM)
CALL LCMGPD(IPTRK,'IPVZ',IPV_PTR)
CALL C_F_POINTER(IP_PTR,IP,(/ LL4 /))
CALL C_F_POINTER(IPV_PTR,IPV,(/ IPV_LEN /))
CALL LCMLEN(IPTRK,'NBLZ',NBL_LEN,ITYLCM)
CALL LCMGPD(IPTRK,'NBLZ',NBL_PTR)
CALL LCMGPD(IPTRK,'LBLZ',LBL_PTR)
CALL C_F_POINTER(NBL_PTR,NBL,(/ NBL_LEN /))
CALL C_F_POINTER(LBL_PTR,LBL,(/ NBL_LEN /))
ALLOCATE(IPB(LL4),GAR(LL4V))
DO 250 I=1,LL4
IPB(I)=IPV(IP(I))
250 CONTINUE
GAR(:LL4V)=0.0
DO 260 I=1,LL4
GAR(IPB(I))=F1(I)
260 CONTINUE
CALL LCMLEN(IPSYS,'ZI'//NAMT,ASS_LEN,ITYLCM)
CALL LCMGPD(IPSYS,'ZI'//NAMT,ASS_PTR)
CALL LCMGPD(IPSYS,'ZD'//NAMT,DGV_PTR)
CALL C_F_POINTER(ASS_PTR,ASS,(/ ASS_LEN /))
CALL C_F_POINTER(DGV_PTR,DGV,(/ LL4V /))
CDIR$ IVDEP
DO 270 I=1,LL4V
GAR(I)=GAR(I)*DGV(I)
270 CONTINUE
CALL ALVDLS(LTSW,MU,ASS,GAR,ISEG,NBL_LEN,NBL,LBL)
DO 290 I=1,LL4
F1(I)=GAR(IPB(I))
290 CONTINUE
DEALLOCATE(GAR,IPB)
ENDIF
ENDIF
RETURN
END
|