1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
|
*DECK KINST1
SUBROUTINE KINST1(NEN,KEN,CMOD,NGR,NBM,NBFIS,NDG,NEL,NUN,LL4,NUP,
1 IDLPC,INORM,POWER,FNORM,DNF,DNS,PDC,LNUD,LCHD,IMPX)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Recover the initial steady-state solution.
*
*Copyright:
* Copyright (C) 2008 Ecole Polytechnique de Montreal.
*
*Author(s): D. Sekki
*
*Parameters: input/output
* NEN number of LCM objects used in the module.
* KEN addresses of LCM objects: (1) L_KINET; (2) L_MACROLIB;
* (3) L_TRACK; (4) L_SYSTEM; (5) L_FLUX.
* CMOD name of the assembly door (BIVAC or TRIVAC).
* NGR number of energy groups.
* NBM number of material mixtures.
* NBFIS number of fissile isotopes.
* NDG number of delayed-neutron groups.
* NEL total number of finite elements.
* NUN total number of unknowns per energy group.
* LL4 order of system matrices.
* NUP total number of precursor unknowns per precursor group.
* IDLPC position of averaged precursor values in unknown vector.
* INORM type of flux normalization (=0: no normalization; =1: imposed
* factor; =2: maximum flux; =3 initial power).
* POWER initial power (MW).
* FNORM normalization factor for the flux.
* DNF delayed neutron fractions.
* DNS delayed neutron spectrum (from input).
* PDC precursor decay constants.
* LNUD flag: =.true. if DNF provided from module input.
* LCHD flag: =.true. if DNS provided from module input.
* IMPX printing parameter (=0 for no print).
*
*-----------------------------------------------------------------------
*
USE GANLIB
*----
* SUBROUTINE ARGUMENTS
*----
TYPE(C_PTR) KEN(NEN)
INTEGER NEN,NGR,NBM,NBFIS,NDG,NEL,NUN,LL4,NUP,IDLPC(NEL),INORM
CHARACTER CMOD*12
REAL POWER,FNORM,DNS(NDG,NGR),PDC(NDG),DNF(NDG)
LOGICAL LNUD,LCHD
*----
* LOCAL VARIABLES
*----
PARAMETER(NSTATE=40,IOS=6,ITR=0)
INTEGER ISTATE(NSTATE),MAT(NEL),IDL(NEL)
REAL VOL(NEL),PMAX(NDG,NBFIS)
TYPE(C_PTR) JPFLX
REAL, DIMENSION(:), ALLOCATABLE :: GAR,RM
REAL, DIMENSION(:,:), ALLOCATABLE :: EVECT,OVR
REAL, DIMENSION(:,:,:), ALLOCATABLE :: PC,CHI,SGF
REAL, DIMENSION(:,:,:,:), ALLOCATABLE :: SGD,CHD
*----
* SCRATCH STORAGE ALLOCATION
*----
ALLOCATE(EVECT(NUN,NGR),PC(NUP,NDG,NBFIS),SGD(NBM,NBFIS,NGR,NDG))
*----
* RECOVER THE TYPE OF ASSEMBLY
*----
ISTATE(:NSTATE)=0
CALL LCMGET(KEN(4),'STATE-VECTOR',ISTATE)
ITY=ISTATE(4)
*----
* RECOVER THE INITIAL FLUX UNKNOWN VECTOR
*----
CALL LCMGET(KEN(3),'MATCOD',MAT)
CALL LCMGET(KEN(3),'VOLUME',VOL)
CALL LCMGET(KEN(3),'KEYFLX',IDL)
ISTATE(:NSTATE)=0
CALL LCMGET(KEN(3),'STATE-VECTOR',ISTATE)
IGM=ISTATE(6)
IF(IMPX.GT.1) WRITE(IOS,1001) NUN
EVECT(:NUN,:NGR)=0.0
CALL LCMGET(KEN(5),'K-EFFECTIVE',FKEFF)
JPFLX=LCMGID(KEN(5),'FLUX')
DO 10 IGR=1,NGR
CALL LCMGDL(JPFLX,IGR,EVECT(1,IGR))
10 CONTINUE
*----
* FIND THE MAXIMUM FLUX VALUE
*----
FMAX=0.0
IDMX=0
DO 25 IGR=1,NGR
DO 20 IEL=1,NEL
IND=IDL(IEL)
IF(IND.EQ.0) GO TO 20
IF(ABS(EVECT(IND,IGR)).GT.FMAX) THEN
FMAX=EVECT(IND,IGR)
IDMX=IEL
IGMX=IGR
ENDIF
20 CONTINUE
25 CONTINUE
IF(IDMX.EQ.0) CALL XABORT('KINST1: UNABLE TO SET FMAX.')
*----
* NORMALIZE THE FLUX
*----
IF(INORM.EQ.2) THEN
FNORM=1.0/FMAX
ELSE IF(INORM.EQ.3) THEN
CALL KINPOW(KEN(2),NGR,NBM,NUN,NEL,MAT,VOL,IDL,EVECT,POWTOT)
IF(POWTOT.EQ.0.0) CALL XABORT('KINST1: H-FACTOR NOT DEFINED IN'
1 //' MACROLIB.')
FNORM=POWER/POWTOT
CALL LCMPUT(KEN(1),'POWER-INI',1,2,POWER)
CALL LCMPUT(KEN(1),'E-POW',1,2,POWER)
IF(IMPX.GT.0) WRITE(6,*) 'INITIAL REACTOR POWER (MW) =',POWER
ENDIF
DO 35 IGR=1,NGR
DO 30 IND=1,NUN
EVECT(IND,IGR)=EVECT(IND,IGR)*FNORM
30 CONTINUE
35 CONTINUE
FMAX=FMAX*FNORM
IF(IMPX.GE.5)THEN
DO 40 IGR=1,NGR
WRITE(IOS,1003) IGR,(EVECT(I,IGR),I=1,NUN)
40 CONTINUE
ENDIF
*----
* RECOVER CROSS SECTIONS
*----
ALLOCATE(OVR(NBM,NGR),CHI(NBM,NBFIS,NGR),CHD(NBM,NBFIS,NGR,NDG),
1 SGF(NBM,NBFIS,NGR))
DT=1.0
CALL KINXSD(KEN(2),NGR,NBM,NBFIS,NDG,FKEFF,DT,DNF,DNS,LNUD,LCHD,
1 OVR,CHI,CHD,SGF,SGD)
DEALLOCATE(SGF,CHD,CHI,OVR)
*----
* INITIAL PRECURSOR UNKNOWN VECTOR
*----
PC(:NUP,:NDG,:NBFIS)=0.0
IF(IMPX.GT.1)WRITE(IOS,1005)
ALLOCATE(GAR(NUN))
DO 95 IFIS=1,NBFIS
DO 90 IDG=1,NDG
IF(CMOD.EQ.'BIVAC')THEN
DO 55 IGR=1,NGR
CALL KINBLM(KEN(3),NBM,NUP,SGD(1,IFIS,IGR,IDG),EVECT(1,IGR),
1 GAR)
DO 50 IND=1,NUP
PC(IND,IDG,IFIS)=PC(IND,IDG,IFIS)+GAR(IND)
50 CONTINUE
55 CONTINUE
CALL MTLDLS('RM',KEN(3),KEN(4),LL4,1,PC(1,IDG,IFIS))
ELSEIF(CMOD.EQ.'TRIVAC')THEN
DO 65 IGR=1,NGR
CALL KINTLM(KEN(3),NBM,NUP,SGD(1,IFIS,IGR,IDG),EVECT(1,IGR),
1 GAR)
DO 60 IND=1,NUP
PC(IND,IDG,IFIS)=PC(IND,IDG,IFIS)+GAR(IND)
60 CONTINUE
65 CONTINUE
CALL LCMLEN(KEN(4),'RM',ILONG,ITYLCM)
IF(IMPX.GT.2) CALL LCMLIB(KEN(4))
ALLOCATE(RM(ILONG))
CALL LCMGET(KEN(4),'RM',RM)
DO 70 IND=1,ILONG
FACT=RM(IND)
IF(FACT.EQ.0.0) CALL XABORT('KINST1: SINGULAR RM.')
PC(IND,IDG,IFIS)=PC(IND,IDG,IFIS)/FACT
70 CONTINUE
DEALLOCATE(RM)
ENDIF
DO 80 IND=1,NUP
PC(IND,IDG,IFIS)=PC(IND,IDG,IFIS)/PDC(IDG)
80 CONTINUE
IF(CMOD.EQ.'BIVAC')THEN
CALL FLDBIV(KEN(3),NEL,NUP,PC(1,IDG,IFIS),MAT,VOL,IDLPC)
ELSEIF(CMOD.EQ.'TRIVAC')THEN
CALL FLDTRI(KEN(3),NEL,NUP,PC(1,IDG,IFIS),MAT,VOL,IDLPC)
ENDIF
90 CONTINUE
95 CONTINUE
DEALLOCATE(GAR)
IF(IMPX.GT.5) THEN
WRITE(IOS,1006)
DO 105 IFIS=1,NBFIS
DO 100 IDG=1,NDG
WRITE(IOS,1007) IDG,IFIS,(PC(IND,IDG,IFIS),IND=1,LL4)
100 CONTINUE
105 CONTINUE
ENDIF
*----
* FIND THE PRECURSOR CORRESPONDING TO MAXIMUM FLUX
*----
IND=IDLPC(IDMX)
IF(IND.EQ.0) CALL XABORT('KINST1: UNABLE TO SET PMAX.')
DO 115 IFIS=1,NBFIS
DO 110 IDG=1,NDG
PMAX(IDG,IFIS)=PC(IND,IDG,IFIS)
110 CONTINUE
115 CONTINUE
IF(IMPX.GT.0) WRITE(IOS,1002) FMAX,IDMX,IGMX
*----
* PRINT AVERAGED PRECURSOR VALUES
*----
IF(IMPX.GT.1) THEN
DO 130 IFIS=1,NBFIS
WRITE(IOS,1008) IFIS,(IDG,IDG=1,NDG)
DO 120 IEL=1,NEL
IND=IDLPC(IEL)
WRITE(IOS,1009) IEL,(PC(IND,IDG,IFIS),IDG=1,NDG)
120 CONTINUE
WRITE(IOS,'(/)')
130 CONTINUE
ENDIF
*----
* L_KINET STATE-VECTOR
*----
ISTATE(:NSTATE)=0
ISTATE(1)=ITR
ISTATE(2)=NDG
ISTATE(3)=NGR
ISTATE(4)=IGM
ISTATE(5)=NEL
ISTATE(6)=NUN
ISTATE(7)=LL4
ISTATE(8)=NUP
ISTATE(9)=NBFIS
ISTATE(10)=ITY
ISTATE(13)=INORM
CALL LCMPUT(KEN(1),'STATE-VECTOR',NSTATE,1,ISTATE)
CALL LCMPUT(KEN(1),'E-IDLPC',NEL,1,IDLPC)
CALL LCMPUT(KEN(1),'E-VECTOR',NUN*NGR,2,EVECT)
CALL LCMPUT(KEN(1),'E-PREC',NUP*NDG*NBFIS,2,PC)
CALL LCMPUT(KEN(1),'E-KEFF',1,2,FKEFF)
CALL LCMPUT(KEN(1),'LAMBDA-D',NDG,2,PDC)
IF(LNUD) CALL LCMPUT(KEN(1),'BETA-D',NDG,2,DNF)
IF(LCHD) CALL LCMPUT(KEN(1),'CHI-D',NDG*NGR,2,DNS)
CALL LCMPUT(KEN(1),'CTRL-FLUX',1,2,FMAX)
CALL LCMPUT(KEN(1),'CTRL-PREC',NDG*NBFIS,2,PMAX)
CALL LCMPUT(KEN(1),'CTRL-IDL',1,1,IDMX)
CALL LCMPUT(KEN(1),'CTRL-IGR',1,1,IGMX)
IF(IMPX.GT.2) CALL LCMLIB(KEN(1))
IF(IMPX.GE.1) WRITE (IOS,1010) IMPX,(ISTATE(I),I=1,10),ISTATE(13)
*----
* SCRATCH STORAGE DEALLOCATION
*----
DEALLOCATE(SGD,PC,EVECT)
RETURN
*
1001 FORMAT(1X,'RECOVERING THE INITIAL UNKNOWN VECTOR',
1 1X,'FOR FLUXES'/1X,'TOTAL NUMBER OF UNKNOWNS PE',
2 'R',1X,'ENERGY GROUP',1X,I6/)
1002 FORMAT(/1X,'CONTROLLING PARAMETERS:',2X,'MAX-VA',
1 'L',1X,1PE12.5,3X,'IDL #',I5.5,3X,'IGR #',I2.2/)
1003 FORMAT(/1X,'=> INITIAL UNKNOWN FLUX VECTOR CORR',
1 'ESPONDING TO THE GROUP #',I2.2//(1P,8E14.5,5X))
1005 FORMAT(/1X,'COMPUTING THE INITIAL UNKNOWN VECTOR',
1 1X,'FOR PRECURSORS'/)
1006 FORMAT(/1X,'=> INITIAL PRECURSOR UNKNOWN VECTOR')
1007 FORMAT(/17H PRECURSOR GROUP=,I5,18H FISSILE ISOTOPE=,I5/
1 (1P,8E14.5))
1008 FORMAT(/52H KINST1: AVERAGED PRECURSOR VALUES (FISSILE ISOTOPE=,
1 I5,1H)/(9X,6I13,:))
1009 FORMAT(1X,I6,2X,1P,6E13.5,:/(9X,6E13.5,:))
1010 FORMAT(/8H OPTIONS/8H -------/
1 7H IMPX ,I6,30H (0=NO PRINT/1=SHORT/2=MORE)/
2 7H ITR ,I6,28H (CURRENT TIME SPEP INDEX)/
3 7H NDG ,I6,39H (NUMBER OF PRECURSOR DELAYED GROUPS)/
4 7H NGR ,I6,28H (NUMBER OF ENERGY GROUPS)/
5 7H IGM ,I6,21H (TYPE OF GEOMETRY)/
6 7H NEL ,I6,30H (NUMBER OF FINITE ELEMENTS)/
7 7H NUN ,I6,46H (TOTAL NUMBER OF UNKNOWNS PER ENERGY GROUP)/
8 7H LL4 ,I6,45H (NUMBER OF FLUX UNKNOWNS PER ENERGY GROUP)/
9 7H NUP ,I6,47H (NUMBER OF PRECURSORS UNKNOWNS PER DELAYED G,
1 5HROUP)/
2 7H NBFIS ,I6,31H (NUMBER OF FISSILE ISOTOPES)/
3 7H ITY ,I6,28H (TYPE OF SYSTEM MATRICES)/
4 7H INORM ,I6,47H (0=NO FLUX NORMALIZATION/1=FIXED/2=MAXIMUM/3,
5 7H=POWER))
END
|