1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
|
*DECK KINSRC
SUBROUTINE KINSRC(IPTRK,IPSYS,CMOD,IMPX,IFL,IPR,IEXP,NGR,NBM,
1 NBFIS,NDG,ITY,LL4,NUN,NUP,PDC,TTF,TTP,DT,ADJ,OVR,CHI,CHD,SGF,
2 SGD,OMEGA,EVECT,PC,SRC)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Compute the space-time kinetics source for a known neutron flux.
*
*Copyright:
* Copyright (C) 2010 Ecole Polytechnique de Montreal.
*
*Author(s): A. Hebert
*
*Parameters: input
* IPTRK pointer to L_TRACK object.
* IPSYS pointer to L_SYSTEM object.
* CMOD name of the assembly door (BIVAC or TRIVAC).
* IMPX print parameter (equal to zero for no print).
* IFL integration scheme for fluxes: =1 implicit;
* =2 Crank-Nicholson; =3 theta.
* IPR integration scheme for precursors: =1 implicit;
* =2 Crank-Nicholson; =3 theta; =4 exponential.
* IEXP exponential transformation flag (=1 to activate).
* NGR number of energy groups.
* NBM number of material mixtures.
* NBFIS number of fissile isotopes.
* NDG number of delayed-neutron groups.
* ITY type of solution: =1: classical Bivac/diffusion;
* =2: classical Trivac/diffusion; =3 Raviart-Thomas in
* Trivac/diffusion; =11: Bivac/SPN; =13 Trivac/SPN.
* LL4 order of the system matrices.
* NUN total number of unknowns per energy group.
* NUP total number of precursor unknowns per precursor group.
* PDC precursor decay constants.
* TTF value of theta-parameter for fluxes.
* TTP value of theta-parameter for precursors.
* DT current time increment.
* ADJ flag for adjoint space-time kinetics calculation
* OVR reciprocal neutron velocities/DT.
* CHI steady-state fission spectrum.
* CHD delayed fission spectrum
* SGF nu*fission macroscopic x-sections/keff.
* SGD delayed nu*fission macroscopic x-sections/keff.
* OMEGA exponential transformation parameter.
* EVECT neutron flux.
* PC precursor concentrations.
*
*Parameters: output
* SRC space-time kinetics source.
*
*-----------------------------------------------------------------------
*
USE GANLIB
*----
* SUBROUTINE ARGUMENTS
*----
TYPE(C_PTR) IPTRK,IPSYS
INTEGER IMPX,IFL,IPR,IEXP,NGR,NBM,NBFIS,NDG,ITY,LL4,NUN,NUP
REAL PDC(NDG),TTF,TTP,DT,OVR(NBM,NGR),CHI(NBM,NBFIS,NGR),
1 CHD(NBM,NBFIS,NGR,NDG),SGF(NBM,NBFIS,NGR),SGD(NBM,NBFIS,NGR,NDG),
2 OMEGA(NBM,NGR),EVECT(NUN,NGR),PC(NUP,NDG,NBFIS)
DOUBLE PRECISION SRC(NUN,NGR)
CHARACTER CMOD*12
LOGICAL ADJ
*----
* LOCAL VARIABLES
*----
PARAMETER(IOS=6)
DOUBLE PRECISION DTF,DTP,DARG,DK,DSM
LOGICAL LFIS
CHARACTER TEXT12*12
REAL, DIMENSION(:), ALLOCATABLE :: WORK1,WORK2,CHEXP
REAL, DIMENSION(:), POINTER :: AGAR
TYPE(C_PTR) AGAR_PTR
*----
* SCRATCH STORAGE ALLOCATION
*----
ALLOCATE(WORK1(LL4),WORK2(NBM),CHEXP(NBM))
*
DTF=9999.0D0
DTP=9999.0D0
IF(IFL.EQ.1)THEN
DTF=1.0D0
ELSEIF(IFL.EQ.2)THEN
DTF=0.5D0
ELSEIF(IFL.EQ.3)THEN
DTF=DBLE(TTF)
ENDIF
IF(IPR.EQ.2)THEN
DTP=0.5D0
ELSEIF(IPR.EQ.3)THEN
DTP=DBLE(TTP)
ENDIF
*
IF(IMPX.GT.0) WRITE(IOS,1001) CMOD
SRC(:NUN,:NGR)=0.0D0
DO 200 IGR=1,NGR
WRITE(TEXT12,'(1HA,2I3.3)') IGR,IGR
CALL MTLDLM(TEXT12,IPTRK,IPSYS,LL4,ITY,EVECT(1,IGR),WORK1)
DO 10 IND=1,LL4
SRC(IND,IGR)=-(1.0D0-DTF)*WORK1(IND)
10 CONTINUE
DO 40 JGR=1,NGR
IF(JGR.EQ.IGR) GO TO 40
IF(.NOT.ADJ) THEN
WRITE(TEXT12,'(1HA,2I3.3)') IGR,JGR
ELSE
WRITE(TEXT12,'(1HA,2I3.3)') JGR,IGR
ENDIF
CALL LCMLEN(IPSYS,TEXT12,ILONG,ITYLCM)
IF(ILONG.EQ.0) GO TO 40
IF((CMOD.EQ.'BIVAC').OR.(ITY.EQ.13))THEN
CALL MTLDLM(TEXT12,IPTRK,IPSYS,LL4,ITY,EVECT(1,JGR),WORK1)
DO 20 IND=1,LL4
SRC(IND,IGR)=SRC(IND,IGR)+(1.0D0-DTF)*WORK1(IND)
20 CONTINUE
ELSEIF(CMOD.EQ.'TRIVAC')THEN
CALL LCMGPD(IPSYS,TEXT12,AGAR_PTR)
CALL C_F_POINTER(AGAR_PTR,AGAR,(/ ILONG /))
DO 30 IND=1,ILONG
SRC(IND,IGR)=SRC(IND,IGR)+(1.0D0-DTF)*AGAR(IND)*EVECT(IND,JGR)
30 CONTINUE
ENDIF
40 CONTINUE
*----
* PRECURSOR CONTRIBUTION
*----
DO 180 IFIS=1,NBFIS
DO 90 IDG=1,NDG
DARG=PDC(IDG)*DT
IF(IPR.EQ.1)THEN
DK=1.0D0/(1.0D0+DARG)
ELSEIF(IPR.EQ.4)THEN
DK=DEXP(-DARG)
ELSE
DK=(1.0D0-(1.0D0-DTP)*DARG)/(1.0D0+DTP*DARG)
ENDIF
DSM=1.0D0-DTF+DTF*DK
LFIS=.FALSE.
DO 50 IBM=1,NBM
LFIS=LFIS.OR.(CHD(IBM,IFIS,IGR,IDG).NE.0.0)
50 CONTINUE
IF(LFIS) THEN
IF(.NOT.ADJ) THEN
DO 60 IBM=1,NBM
IF(IEXP.EQ.0) THEN
CHEXP(IBM)=CHD(IBM,IFIS,IGR,IDG)
ELSE
* exponential transformation
CHEXP(IBM)=CHD(IBM,IFIS,IGR,IDG)*EXP(-OMEGA(IBM,IGR)*DT)
ENDIF
60 CONTINUE
ELSE
DO 70 IBM=1,NBM
IF(IEXP.EQ.0) THEN
CHEXP(IBM)=SGD(IBM,IFIS,IGR,IDG)
ELSE
* exponential transformation
CHEXP(IBM)=SGD(IBM,IFIS,IGR,IDG)*EXP(-OMEGA(IBM,IGR)*DT)
ENDIF
70 CONTINUE
ENDIF
IF(CMOD.EQ.'BIVAC')THEN
CALL KINBLM(IPTRK,NBM,LL4,CHEXP(1),PC(1,IDG,IFIS),WORK1)
ELSEIF(CMOD.EQ.'TRIVAC')THEN
CALL KINTLM(IPTRK,NBM,LL4,CHEXP(1),PC(1,IDG,IFIS),WORK1)
ENDIF
DO 80 IND=1,LL4
SRC(IND,IGR)=SRC(IND,IGR)+PDC(IDG)*DSM*WORK1(IND)
80 CONTINUE
ENDIF
90 CONTINUE
*----
* FISSION CONTRIBUTION
*----
DO 170 JGR=1,NGR
IF(.NOT.ADJ) THEN
DO 100 IBM=1,NBM
WORK2(IBM)=CHI(IBM,IFIS,IGR)*SGF(IBM,IFIS,JGR)
100 CONTINUE
ELSE
DO 110 IBM=1,NBM
WORK2(IBM)=CHI(IBM,IFIS,JGR)*SGF(IBM,IFIS,IGR)
110 CONTINUE
ENDIF
IF(CMOD.EQ.'BIVAC')THEN
CALL KINBLM(IPTRK,NBM,LL4,WORK2(1),EVECT(1,JGR),WORK1)
ELSEIF(CMOD.EQ.'TRIVAC')THEN
CALL KINTLM(IPTRK,NBM,LL4,WORK2(1),EVECT(1,JGR),WORK1)
ENDIF
DO 120 IND=1,LL4
SRC(IND,IGR)=SRC(IND,IGR)+(1.0D0-DTF)*WORK1(IND)
120 CONTINUE
DO 160 IDG=1,NDG
DARG=PDC(IDG)*DT
IF(IPR.EQ.1)THEN
DK=0.0D0
ELSEIF(IPR.EQ.4)THEN
DK=(1.0D0-DEXP(-DARG))/DARG-DEXP(-DARG)
ELSE
DK=(1.0D0-DTP)*DARG/(1.0D0+DTP*DARG)
ENDIF
DSM=1.0D0-DTF-DTF*DK
IF(.NOT.ADJ) THEN
DO 130 IBM=1,NBM
WORK2(IBM)=CHD(IBM,IFIS,IGR,IDG)*SGD(IBM,IFIS,JGR,IDG)
130 CONTINUE
ELSE
DO 140 IBM=1,NBM
WORK2(IBM)=CHD(IBM,IFIS,JGR,IDG)*SGD(IBM,IFIS,IGR,IDG)
140 CONTINUE
ENDIF
IF(CMOD.EQ.'BIVAC')THEN
CALL KINBLM(IPTRK,NBM,LL4,WORK2(1),EVECT(1,JGR),WORK1)
ELSEIF(CMOD.EQ.'TRIVAC')THEN
CALL KINTLM(IPTRK,NBM,LL4,WORK2(1),EVECT(1,JGR),WORK1)
ENDIF
DO 150 IND=1,LL4
SRC(IND,IGR)=SRC(IND,IGR)-DSM*WORK1(IND)
150 CONTINUE
160 CONTINUE
170 CONTINUE
180 CONTINUE
*----
* 1/V CONTRIBUTION
*----
IF(CMOD.EQ.'BIVAC')THEN
CALL KINBLM(IPTRK,NBM,LL4,OVR(1,IGR),EVECT(1,IGR),WORK1)
ELSEIF(CMOD.EQ.'TRIVAC')THEN
CALL KINTLM(IPTRK,NBM,LL4,OVR(1,IGR),EVECT(1,IGR),WORK1)
ENDIF
DO 190 IND=1,LL4
SRC(IND,IGR)=SRC(IND,IGR)+WORK1(IND)
190 CONTINUE
200 CONTINUE
*----
* EDITION
*----
IF(IMPX.GT.5) THEN
WRITE(IOS,1002)
DO 210 IGR=1,NGR
WRITE(IOS,1003) IGR,(SRC(IND,IGR),IND=1,LL4)
210 CONTINUE
ENDIF
*----
* SCRATCH STORAGE DEALLOCATION
*----
DEALLOCATE(CHEXP,WORK2,WORK1)
RETURN
*
1001 FORMAT(/1X,'COMPUTING THE SPACE-TIME KINETICS SOURCE VECTOR',
1 1X,'ACCORDING TO THE TRACKING TYPE: ',A6/)
1002 FORMAT(/1X,'=> COMPUTED SPACE-TIME KINETICS SOURCE VECTOR')
1003 FORMAT(/15H NEUTRON GROUP=,I5/(1P,8D14.5))
END
|