summaryrefslogtreecommitdiff
path: root/Trivac/src/KINSLT.f
blob: acde90b1dc7c84f1ee3c79b2fe5400d5b385b363 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
*DECK KINSLT
      SUBROUTINE KINSLT (IPTRK,IPSYS,IPKIN,LL4,ITY,NUN,NGR,IFL,IPR,IEXP,
     1 NBM,NBFIS,NDG,ICL1,ICL2,IMPX,IMPH,TITR,EPS2,MAXINR,EPSINR,NADI,
     2 ADJ,MAXX0,PDC,TTF,TTP,DT,OVR,CHI,CHD,SGF,SGD,OMEGA,EVECT,SRC)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Solution of the kinetics multigroup linear systems for the transient
* neutron fluxes in Trivac. Use the preconditioned power method with a
* two group SVAT acceleration technique.
*
*Copyright:
* Copyright (C) 2010 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IPTRK   L_TRACK pointer to the tracking information.
* IPSYS   L_SYSTEM pointer to system matrices.
* IPKIN   L_KINET pointer to the KINET object.
* LL4     order of the system matrices.
* ITY     type of solution (2: classical Trivac; 3: Thomas-Raviart,
*         13: Thomas-Raviart/SPN).
* NUN     number of unknowns in each energy group.
* NGR     number of energy groups.
* IFL     integration scheme for fluxes: =1 implicit;
*         =2 Crank-Nicholson; =3 theta.
* IPR     integration scheme for precursors: =1 implicit;
*         =2 Crank-Nicholson; =3 theta; =4 exponential.
* IEXP    exponential transformation flag (=1 to activate).
* NBM     number of material mixtures.
* NBFIS   number of fissile isotopes.
* NDG     number of delayed-neutron groups.
* ICL1    number of free iterations in one cycle of the inverse power
*         method
* ICL2    number of accelerated iterations in one cycle
* IMPX    print parameter. =0: no print ; =1: minimum printing ;
*         =2: iteration history is printed. =3: solution is printed
* IMPH    =0: no action is taken
*         =1: the flux is compared to a reference flux stored on lcm
*         =2: the convergence histogram is printed
*         =3: the convergence histogram is printed with axis and
*            titles. The plotting file is completed
*         =4: the convergence histogram is printed with axis, acce-
*            leration factors and titles. The plotting file is
*            completed
* TITR    character*72 title
* EPS2    convergence criteria for the flux
* MAXINR  maximum number of thermal iterations.
* EPSINR  thermal iteration epsilon.
* NADI    number of inner adi iterations per outer iteration
* ADJ     flag for adjoint space-time kinetics calculation
* MAXX0   maximum number of outer iterations
* PDC     precursor decay constants.
* TTF     value of theta-parameter for fluxes.
* TTP     value of theta-parameter for precursors.
* DT      current time increment.
* OVR     reciprocal neutron velocities/DT.
* CHI     steady-state fission spectrum.
* CHD     delayed fission spectrum.
* SGF     nu*fission macroscopic x-sections/keff.
* SGD     delayed nu*fission macroscopic x-sections/keff.
* OMEGA   exponential transformation parameter.
* SRC     fixed source.
*
*Parameters: output
* EVECT   converged solution
*
*References:
* A. H\'ebert, 'Preconditioning the power method for reactor
* calculations', Nucl. Sci. Eng., 94, 1 (1986).
*
*-----------------------------------------------------------------------
*
      USE GANLIB
*----
*  SUBROUTINE ARGUMENTS
*----
      CHARACTER TITR*72
      TYPE(C_PTR) IPTRK,IPSYS,IPKIN
      INTEGER LL4,ITY,NUN,NGR,IFL,IPR,IEXP,NBM,NBFIS,NDG,ICL1,ICL2,IMPX,
     1 IMPH,MAXINR,NADI,MAXX0
      REAL EPS2,EPSINR,PDC(NDG),TTF,TTP,DT,OVR(NBM,NGR),
     1 CHI(NBM,NBFIS,NGR),CHD(NBM,NBFIS,NGR,NDG),SGF(NBM,NBFIS,NGR),
     2 SGD(NBM,NBFIS,NGR,NDG),OMEGA(NBM,NGR),EVECT(NUN,NGR)
      DOUBLE PRECISION SRC(NUN,NGR)
      LOGICAL ADJ
*----
*  LOCAL VARIABLES
*----
      CHARACTER*12 TEXT12
      LOGICAL LOGTES,LMPH
      DOUBLE PRECISION D2F(2,3),ALP,BET,DTF,DTP,DARG,DK
      REAL ERR(250),ALPH(250),BETA(250),TKT,TKB
      INTEGER  ITITR(18)
      REAL, DIMENSION(:,:), ALLOCATABLE :: GRAD1,GRAD2
      DOUBLE PRECISION, DIMENSION(:,:), ALLOCATABLE :: GAR1,GAR2,GAR3
      REAL, DIMENSION(:), ALLOCATABLE :: WORK1,WORK2,WORK3
      REAL, DIMENSION(:), POINTER :: AGAR
      TYPE(C_PTR) AGAR_PTR
      DATA EPS1,MMAXX/1.0E-4,250/
*----
*  SCRATCH STORAGE ALLOCATION
*----
      ALLOCATE(GRAD1(NUN,NGR),GRAD2(NUN,NGR),GAR1(NUN,NGR),
     1 GAR2(NUN,NGR),GAR3(NUN,NGR),WORK1(LL4),WORK2(LL4),WORK3(NBM))
*
      CALL MTOPEN(IMPX,IPTRK,LL4)
      IF(LL4.GT.NUN) CALL XABORT('KINSLT: INVALID NUMBER OF UNKNOWNS.')
*----
*  PRECONDITIONED POWER METHOD.
*----
      DTF=9999.0D0
      DTP=9999.0D0
      TEST=0.0
      IF(IFL.EQ.1)THEN
        DTF=1.0D0
      ELSEIF(IFL.EQ.2)THEN
        DTF=0.5D0
      ELSEIF(IFL.EQ.3)THEN
        DTF=DBLE(TTF)
      ENDIF
      IF(IPR.EQ.2)THEN
        DTP=0.5D0
      ELSEIF(IPR.EQ.3)THEN
        DTP=DBLE(TTP)
      ENDIF
      DCRIT=MINVAL(DT*PDC(:))
*
      ISTART=1
      NNADI=NADI
      IF(IMPX.GE.1) WRITE (6,600) NADI
      IF(IMPX.GE.2) WRITE (6,610)
      M=0
   10 M=M+1
*
      DO 84 IGR=1,NGR
      WRITE(TEXT12,'(1HA,2I3.3)') IGR,IGR
      CALL MTLDLM(TEXT12,IPTRK,IPSYS,LL4,ITY,EVECT(1,IGR),WORK1)
      DO 15 IND=1,LL4
      GAR1(IND,IGR)=DTF*WORK1(IND)
   15 CONTINUE
      IF(IEXP.EQ.0) THEN
        DO 16 IBM=1,NBM
        WORK3(IBM)=OVR(IBM,IGR)
   16   CONTINUE
      ELSE
        DO 17 IBM=1,NBM
        WORK3(IBM)=OVR(IBM,IGR)*(1.0+OMEGA(IBM,IGR)*DT)
   17   CONTINUE
      ENDIF
      CALL KINTLM(IPTRK,NBM,LL4,WORK3,EVECT(1,IGR),WORK1)
      DO 20 IND=1,LL4
      GAR1(IND,IGR)=GAR1(IND,IGR)+WORK1(IND)
   20 CONTINUE
      DO 83 JGR=1,NGR
      IF(JGR.EQ.IGR) GO TO 40
      IF(.NOT.ADJ) THEN
        WRITE(TEXT12,'(1HA,2I3.3)') IGR,JGR
      ELSE
        WRITE(TEXT12,'(1HA,2I3.3)') JGR,IGR
      ENDIF
      CALL LCMLEN(IPSYS,TEXT12,ILONG,ITYLCM)
      IF(ILONG.EQ.0) GO TO 40
      IF(ITY.EQ.13) THEN
        CALL MTLDLM(TEXT12,IPTRK,IPSYS,LL4,ITY,EVECT(1,JGR),WORK1)
        DO 25 IND=1,LL4
        GAR1(IND,IGR)=GAR1(IND,IGR)-DTF*WORK1(IND)
   25   CONTINUE
      ELSE
        CALL LCMGPD(IPSYS,TEXT12,AGAR_PTR)
        CALL C_F_POINTER(AGAR_PTR,AGAR,(/ ILONG /))
        DO 30 IND=1,ILONG
        GAR1(IND,IGR)=GAR1(IND,IGR)-DTF*AGAR(IND)*EVECT(IND,JGR)
   30   CONTINUE
      ENDIF
   40 DO 82 IFIS=1,NBFIS
      IF(.NOT.ADJ) THEN
        DO 50 IBM=1,NBM
        WORK3(IBM)=CHI(IBM,IFIS,IGR)*SGF(IBM,IFIS,JGR)
   50   CONTINUE
      ELSE
        DO 55 IBM=1,NBM
        WORK3(IBM)=CHI(IBM,IFIS,JGR)*SGF(IBM,IFIS,IGR)
   55   CONTINUE
      ENDIF
      CALL KINTLM(IPTRK,NBM,LL4,WORK3,EVECT(1,JGR),WORK1)
      DO 60 IND=1,LL4
      GAR1(IND,IGR)=GAR1(IND,IGR)-DTF*WORK1(IND)
   60 CONTINUE
      DO 81 IDG=1,NDG
      DARG=PDC(IDG)*DT
      IF(IPR.EQ.1)THEN
        DK=1.0D0/(1.0D0+DARG)
      ELSEIF(IPR.EQ.4)THEN
        DK=(1.0D0-DEXP(-DARG))/DARG
      ELSE
        DK=1.0D0/(1.0D0+DTP*DARG)
      ENDIF
      IF(.NOT.ADJ) THEN
        DO 70 IBM=1,NBM
        WORK3(IBM)=CHD(IBM,IFIS,IGR,IDG)*SGD(IBM,IFIS,JGR,IDG)
   70   CONTINUE
      ELSE
        DO 75 IBM=1,NBM
        WORK3(IBM)=CHD(IBM,IFIS,JGR,IDG)*SGD(IBM,IFIS,IGR,IDG)
   75   CONTINUE
      ENDIF
      CALL KINTLM(IPTRK,NBM,LL4,WORK3,EVECT(1,JGR),WORK1)
      DO 80 IND=1,LL4
      GAR1(IND,IGR)=GAR1(IND,IGR)+DTF*DK*WORK1(IND)
   80 CONTINUE
   81 CONTINUE
   82 CONTINUE
   83 CONTINUE
   84 CONTINUE
*----
*  DIRECTION EVALUATION.
*----
      DO 120 IGR=1,NGR
      DO 90 IND=1,LL4
      GRAD1(IND,IGR)=REAL(SRC(IND,IGR)-GAR1(IND,IGR))
   90 CONTINUE
      DO 110 JGR=1,IGR-1
      IF(.NOT.ADJ) THEN
        WRITE(TEXT12,'(1HA,2I3.3)') IGR,JGR
      ELSE
        WRITE(TEXT12,'(1HA,2I3.3)') JGR,IGR
      ENDIF
      CALL LCMLEN(IPSYS,TEXT12,ILONG,ITYLCM)
      IF(ILONG.EQ.0) GO TO 110
      IF(ITY.EQ.13) THEN
        CALL MTLDLM(TEXT12,IPTRK,IPSYS,LL4,ITY,GRAD1(1,JGR),WORK1)
        DO 95 IND=1,LL4
        GRAD1(IND,IGR)=GRAD1(IND,IGR)+REAL(DTF)*WORK1(IND)
   95   CONTINUE
      ELSE
        CALL LCMGPD(IPSYS,TEXT12,AGAR_PTR)
        CALL C_F_POINTER(AGAR_PTR,AGAR,(/ ILONG /))
        DO 100 IND=1,ILONG
        GRAD1(IND,IGR)=GRAD1(IND,IGR)+REAL(DTF)*AGAR(IND)*GRAD1(IND,JGR)
  100   CONTINUE
      ENDIF
  110 CONTINUE
*
      WRITE(TEXT12,'(1HA,2I3.3)') IGR,IGR
      CALL FLDADI(TEXT12,IPTRK,IPSYS,LL4,ITY,GRAD1(1,IGR),NNADI)
      DO 115 IND=1,LL4
      GRAD1(IND,IGR)=GRAD1(IND,IGR)/REAL(DTF)
  115 CONTINUE
  120 CONTINUE
*----
*  PERFORM THERMAL (UP-SCATTERING) ITERATIONS
*----
      IF(MAXINR.GT.1) THEN
         CALL FLDTHR(IPTRK,IPSYS,IPKIN,.FALSE.,LL4,ITY,NUN,NGR,ICL1,
     1   ICL2,IMPX,NNADI,0,MAXINR,EPSINR,ITER,TKT,TKB,GRAD1)
      ENDIF
*----
*  EVALUATION OF THE DISPLACEMENT AND OF THE TWO ACCELERATION PARAMETERS
*  ALP AND BET.
*----
      DO 204 IGR=1,NGR
      WRITE(TEXT12,'(1HA,2I3.3)') IGR,IGR
      CALL MTLDLM(TEXT12,IPTRK,IPSYS,LL4,ITY,GRAD1(1,IGR),WORK1)
      DO 130 IND=1,LL4
      GAR2(IND,IGR)=DTF*WORK1(IND)
  130 CONTINUE
      IF(IEXP.EQ.0) THEN
        DO 135 IBM=1,NBM
        WORK3(IBM)=OVR(IBM,IGR)
  135   CONTINUE
      ELSE
        DO 136 IBM=1,NBM
        WORK3(IBM)=OVR(IBM,IGR)*(1.0+OMEGA(IBM,IGR)*DT)
  136   CONTINUE
      ENDIF
      CALL KINTLM(IPTRK,NBM,LL4,WORK3,GRAD1(1,IGR),WORK1)
      DO 140 IND=1,LL4
      GAR2(IND,IGR)=GAR2(IND,IGR)+WORK1(IND)
  140 CONTINUE
      DO 203 JGR=1,NGR
      IF(JGR.EQ.IGR) GO TO 160
      IF(.NOT.ADJ) THEN
        WRITE(TEXT12,'(1HA,2I3.3)') IGR,JGR
      ELSE
        WRITE(TEXT12,'(1HA,2I3.3)') JGR,IGR
      ENDIF
      CALL LCMLEN(IPSYS,TEXT12,ILONG,ITYLCM)
      IF(ILONG.EQ.0) GO TO 160
      IF(ITY.EQ.13) THEN
        CALL MTLDLM(TEXT12,IPTRK,IPSYS,LL4,ITY,GRAD1(1,JGR),WORK1)
        DO 145 IND=1,LL4
        GAR2(IND,IGR)=GAR2(IND,IGR)-DTF*WORK1(IND)
  145   CONTINUE
      ELSE
        CALL LCMGPD(IPSYS,TEXT12,AGAR_PTR)
        CALL C_F_POINTER(AGAR_PTR,AGAR,(/ ILONG /))
        DO 150 IND=1,ILONG
        GAR2(IND,IGR)=GAR2(IND,IGR)-DTF*AGAR(IND)*GRAD1(IND,JGR)
  150   CONTINUE
      ENDIF
  160 DO 202 IFIS=1,NBFIS
      IF(.NOT.ADJ) THEN
        DO 170 IBM=1,NBM
        WORK3(IBM)=CHI(IBM,IFIS,IGR)*SGF(IBM,IFIS,JGR)
  170   CONTINUE
      ELSE
        DO 175 IBM=1,NBM
        WORK3(IBM)=CHI(IBM,IFIS,JGR)*SGF(IBM,IFIS,IGR)
  175   CONTINUE
      ENDIF
      CALL KINTLM(IPTRK,NBM,LL4,WORK3,GRAD1(1,JGR),WORK1)
      DO 180 IND=1,LL4
      GAR2(IND,IGR)=GAR2(IND,IGR)-DTF*WORK1(IND)
  180 CONTINUE
      DO 201 IDG=1,NDG
      DARG=PDC(IDG)*DT
      IF(IPR.EQ.1)THEN
        DK=1.0D0/(1.0D0+DARG)
      ELSEIF(IPR.EQ.4)THEN
        DK=(1.0D0-DEXP(-DARG))/DARG
      ELSE
        DK=1.0D0/(1.0D0+DTP*DARG)
      ENDIF
      IF(.NOT.ADJ) THEN
        DO 190 IBM=1,NBM
        WORK3(IBM)=CHD(IBM,IFIS,IGR,IDG)*SGD(IBM,IFIS,JGR,IDG)
  190   CONTINUE
      ELSE
        DO 195 IBM=1,NBM
        WORK3(IBM)=CHD(IBM,IFIS,JGR,IDG)*SGD(IBM,IFIS,IGR,IDG)
  195   CONTINUE
      ENDIF
      CALL KINTLM(IPTRK,NBM,LL4,WORK3,GRAD1(1,JGR),WORK1)
      DO 200 IND=1,LL4
      GAR2(IND,IGR)=GAR2(IND,IGR)+DTF*DK*WORK1(IND)
  200 CONTINUE
  201 CONTINUE
  202 CONTINUE
  203 CONTINUE
  204 CONTINUE
*
  270 ALP=1.0D0
      BET=0.0D0
      D2F(:2,:3)=0.0D0
      IF(1+MOD(M-ISTART,ICL1+ICL2).GT.ICL1) THEN
         IF(DCRIT.GT.1.0E-6) THEN
*           TWO-PARAMETER ACCELERATION. SOLUTION OF A LINEAR SYSTEM.
            DO 285 IGR=1,NGR
            DO 280 I=1,LL4
            D2F(1,1)=D2F(1,1)+GAR2(I,IGR)**2
            D2F(1,2)=D2F(1,2)+GAR2(I,IGR)*GAR3(I,IGR)
            D2F(2,2)=D2F(2,2)+GAR3(I,IGR)**2
            D2F(1,3)=D2F(1,3)-(GAR1(I,IGR)-SRC(I,IGR))*GAR2(I,IGR)
            D2F(2,3)=D2F(2,3)-(GAR1(I,IGR)-SRC(I,IGR))*GAR3(I,IGR)
  280       CONTINUE
  285       CONTINUE
            D2F(2,1)=D2F(1,2)
            CALL ALSBD(2,1,D2F,IER,2)
            IF(IER.NE.0) THEN
               DCRIT=1.0E-6
               GO TO 270
            ENDIF
            ALP=D2F(1,3)
            BET=D2F(2,3)/ALP
            IF((ALP.LT.1.0D0).AND.(ALP.GT.0.0D0)) THEN
               ALP=1.0D0
               BET=0.0D0
            ELSE IF(ALP.LE.0.0D0) THEN
               ISTART=M+1
               ALP=1.0D0
               BET=0.0D0
            ENDIF
         ELSE
*           ONE-PARAMETER ACCELERATION.
            DO 295 IGR=1,NGR
            DO 290 I=1,LL4
            D2F(1,1)=D2F(1,1)+GAR2(I,IGR)**2
            D2F(1,3)=D2F(1,3)-(GAR1(I,IGR)-SRC(I,IGR))*GAR2(I,IGR)
  290       CONTINUE
  295       CONTINUE
            IF(D2F(1,1).NE.0.0D0) THEN
               ALP=D2F(1,3)/D2F(1,1)
            ELSE
               ISTART=M+1
            ENDIF
         ENDIF
         DO 305 IGR=1,NGR
         DO 300 I=1,LL4
         GRAD1(I,IGR)=REAL(ALP)*(GRAD1(I,IGR)+REAL(BET)*GRAD2(I,IGR))
         GAR2(I,IGR)=ALP*(GAR2(I,IGR)+BET*GAR3(I,IGR))
  300    CONTINUE
  305    CONTINUE
      ENDIF
*
      LOGTES=(M.LT.ICL1).OR.(MOD(M-ISTART,ICL1+ICL2).EQ.ICL1-1)
      IF(LOGTES) THEN
         DELT=0.0
         DO 350 IGR=1,NGR
         WORK1(:LL4)=0.0
         WORK2(:LL4)=0.0
         DO 320 JGR=1,NGR
         IF(.NOT.ADJ) THEN
           WRITE(TEXT12,'(1HB,2I3.3)') IGR,JGR
         ELSE
           WRITE(TEXT12,'(1HB,2I3.3)') JGR,IGR
         ENDIF
         CALL LCMLEN(IPSYS,TEXT12,ILONG,ITYLCM)
         IF(ILONG.EQ.0) GO TO 320
         CALL LCMGPD(IPSYS,TEXT12,AGAR_PTR)
         CALL C_F_POINTER(AGAR_PTR,AGAR,(/ ILONG /))
         DO 310 I=1,ILONG
         WORK1(I)=WORK1(I)+AGAR(I)*EVECT(I,JGR)
         WORK2(I)=WORK2(I)+AGAR(I)*GRAD1(I,JGR)
  310    CONTINUE
  320    CONTINUE
         DELN=0.0
         DELD=0.0
         DO 340 I=1,LL4
         EVECT(I,IGR)=EVECT(I,IGR)+GRAD1(I,IGR)
         GAR1(I,IGR)=GAR1(I,IGR)+GAR2(I,IGR)
         GRAD2(I,IGR)=GRAD1(I,IGR)
         GAR3(I,IGR)=GAR2(I,IGR)
         DELN=MAX(DELN,ABS(WORK2(I)))
         DELD=MAX(DELD,ABS(WORK1(I)))
  340    CONTINUE
         IF(DELD.NE.0.0) DELT=MAX(DELT,DELN/DELD)
  350    CONTINUE
         IF(IMPX.GE.2) WRITE (6,620) M,ALP,BET,DELT
*        COMPUTE THE CONVERGENCE HISTOGRAM.
         IF((IMPH.GE.1).AND.(M.LE.250)) THEN
            LMPH=IMPH.GE.1
            CALL FLDXCO(IPKIN,LL4,NUN,EVECT(1,NGR),LMPH,ERR(M))
            ALPH(M)=REAL(ALP)
            BETA(M)=REAL(BET)
         ENDIF
         IF(DELT.LT.EPS2) GO TO 370
      ELSE
         DO 365 IGR=1,NGR
         DO 360 I=1,LL4
         EVECT(I,IGR)=EVECT(I,IGR)+GRAD1(I,IGR)
         GAR1(I,IGR)=GAR1(I,IGR)+GAR2(I,IGR)
         GRAD2(I,IGR)=GRAD1(I,IGR)
         GAR3(I,IGR)=GAR2(I,IGR)
  360    CONTINUE
  365    CONTINUE
         IF(IMPX.GE.2) WRITE (6,620) M,ALP,BET
*        COMPUTE THE CONVERGENCE HISTOGRAM.
         IF((IMPH.GE.1).AND.(M.LE.250)) THEN
            LMPH=IMPH.GE.1
            CALL FLDXCO(IPKIN,LL4,NUN,EVECT(1,NGR),LMPH,ERR(M))
            ALPH(M)=REAL(ALP)
            BETA(M)=REAL(BET)
         ENDIF
      ENDIF
      IF(M.EQ.1) TEST=DELT
      IF((M.GT.30).AND.(DELT.GT.TEST)) CALL XABORT('KINSLT: CONVERGENC'
     1 //'E FAILURE.')
      IF(M.GE.MIN(MAXX0,MMAXX)) THEN
         WRITE (6,710)
         GO TO 370
      ENDIF
      IF(MOD(M,36).EQ.0) THEN
         ISTART=M+1
         NNADI=NNADI+1
         IF (IMPX.NE.0) WRITE (6,720) NNADI
      ENDIF
      GO TO 10
*----
*  SOLUTION EDITION.
*----
  370 IF(IMPX.EQ.1) WRITE (6,640) M
      IF(IMPX.GE.3) THEN
         DO 380 IGR=1,NGR
         WRITE (6,690) IGR,(EVECT(I,IGR),I=1,LL4)
  380    CONTINUE
      ENDIF
      IF(IMPH.GE.2) THEN
         IGRAPH=0
  390    IGRAPH=IGRAPH+1
         WRITE (TEXT12,'(5HHISTO,I3)') IGRAPH
         CALL LCMLEN (IPKIN,TEXT12,ILENG,ITYLCM)
         IF(ILENG.EQ.0) THEN
            MDIM=MIN(250,M)
            READ (TITR,'(18A4)') ITITR
            CALL LCMSIX (IPKIN,TEXT12,1)
            CALL LCMPUT (IPKIN,'HTITLE',18,3,ITITR)
            CALL LCMPUT (IPKIN,'ALPHA',MDIM,2,ALPH)
            CALL LCMPUT (IPKIN,'BETA',MDIM,2,BETA)
            CALL LCMPUT (IPKIN,'ERROR',MDIM,2,ERR)
            CALL LCMPUT (IPKIN,'IMPH',1,1,IMPH)
            CALL LCMSIX (IPKIN,' ',2)
         ELSE
            GO TO 390
         ENDIF
      ENDIF
*----
*  SCRATCH STORAGE DEALLOCATION
*----
      DEALLOCATE(GRAD1,GRAD2,GAR1,GAR2,GAR3,WORK1,WORK2,WORK3)
      RETURN
*
  600 FORMAT(1H1/50H KINSLT: ITERATIVE PROCEDURE BASED ON PRECONDITION,
     1 17HED POWER METHOD (,I2,37H ADI ITERATIONS PER OUTER ITERATION)./
     2 9X,30HSPACE-TIME KINETICS EQUATIONS.)
  610 FORMAT(/11X,5HALPHA,3X,4HBETA,6X,8HACCURACY,12(1H.))
  620 FORMAT(1X,I3,4X,2F8.3,1PE13.2)
  640 FORMAT(/23H KINSLT: CONVERGENCE IN,I4,12H ITERATIONS.)
  690 FORMAT(//52H KINSLT: SPACE-TIME KINETICS SOLUTION CORRESPONDING ,
     1 12HTO THE GROUP,I4//(5X,1P,8E14.5))
  710 FORMAT(/53H KINSLT: ***WARNING*** THE MAXIMUM NUMBER OF OUTER IT,
     1 20HERATIONS IS REACHED.)
  720 FORMAT(/53H KINSLT: INCREASING THE NUMBER OF INNER ITERATIONS TO,
     1 I3,36H ADI ITERATIONS PER OUTER ITERATION./)
      END