summaryrefslogtreecommitdiff
path: root/Trivac/src/KINDRV.f
blob: 8ad451d562ae3ef98d5131e1fa1b68511722f2ee (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
*DECK KINDRV
      SUBROUTINE KINDRV(NEN,KEN,CMOD,NGR,NBM,NBFIS,NDG,NLF,ITY,NEL,
     1 LL4,NUN,NUP,TTF,TTP,DT,IMPH,ICL1,ICL2,NADI,ADJ,MAXOUT,EPSOUT,
     2 MAXINR,EPSINR,IFL,IPR,IEXP,INORM,IMPX,POWTOT)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Driver to perform the space-time kinetics calculations.
*
*Copyright:
* Copyright (C) 2008 Ecole Polytechnique de Montreal.
*
*Author(s): D. Sekki
*
*Parameters: input
* NEN     number of LCM objects used in the module.
* KEN     addresses of LCM objects: (1) L_KINET; (2) L_MACROLIB;
*         (3) L_TRACK; (4) L_SYSTEM; (5) L_MACROLIB.
* CMOD    name of the assembly door (BIVAC or TRIVAC).
* NGR     number of energy groups.
* NBM     number of material mixtures.
* NBFIS   number of fissile isotopes.
* NDG     number of delayed-neutron groups.
* NLF     number of Legendre orders for fluxes.
* ITY     type of finite elements and tracking.
* NEL     total number of finite elements.
* LL4     number of flux unknowns per energy group.
* NUN     total number of unknowns per energy group.
* NUP     number of precursor unknowns per delayed group.
* TTF     value of theta-parameter for fluxes.
* TTP     value of theta-parameter for precursors.
* DT      current time increment.
* IMPH    management of convergence histogram.
* ICL1    number of free iterations in one cycle of the inverse power
*         method
* ICL2    number of accelerated iterations in one cycle
* NADI    number of inner adi iterations per outer iteration
* ADJ     flag for adjoint space-time kinetics calculation
* MAXOUT  maximum number of outer iterations
* EPSOUT  convergence criteria for the flux
* MAXINR  maximum number of thermal iterations.
* EPSINR  thermal iteration epsilon.
* IFL     temporal integration scheme for fluxes.
* IPR     temporal integration scheme for precursors.
* IEXP    exponential transformation flag (=1 to activate).
* INORM   type of flux normalization (=0: no normalization; =1: imposed
*         factor; =2: maximum flux; =3 initial power).
* IMPX    printing parameter (=0 for no print).
*
*Parameter: output
* POWTOT  power.
*
*-----------------------------------------------------------------------
*
      USE GANLIB
*----
*  SUBROUTINE ARGUMENTS
*----
      INTEGER NEN,NGR,NBM,NBFIS,NDG,NLF,ITY,NEL,LL4,NUN,NUP,IMPH,ICL1,
     1 ICL2,NADI,MAXOUT,MAXINR,IFL,IPR,IEXP,INORM,IMPX
      TYPE(C_PTR) KEN(NEN)
      REAL TTF,TTP,DT,EPSOUT,EPSINR,POWTOT
      CHARACTER CMOD*12
      LOGICAL ADJ
*----
*  LOCAL VARIABLES
*----
      PARAMETER(IOS=6)
      INTEGER MAT(NEL),IDL(NEL),IDLPC(NEL)
      REAL VOL(NEL),PDC(NDG),PMAX(NDG,NBFIS)
      LOGICAL LNUD,LCHD
      TYPE(C_PTR) IPMAC,IPSYS
      REAL, DIMENSION(:), ALLOCATABLE :: DNF,AVG1,AVG2,WORK1,RM
      REAL, DIMENSION(:,:), ALLOCATABLE :: EVECT,DNS,PHO,OVR,OMEGA
      REAL, DIMENSION(:,:,:), ALLOCATABLE :: PC,CHI,SGF
      REAL, DIMENSION(:,:,:,:), ALLOCATABLE :: SGD,CHD,SGO
      DOUBLE PRECISION, DIMENSION(:,:), ALLOCATABLE :: SRC
*----
*  SCRATCH STORAGE ALLOCATION
*----
      ALLOCATE(EVECT(NUN,NGR),PC(NUP,NDG,NBFIS),SGD(NBM,NBFIS,NGR,NDG),
     1 OMEGA(NBM,NGR))
*----
*  RECOVER INFORMATION
*----
      CALL KDRCPU(TK1)
      TA1=TK1
      IF(IMPX.GT.0) WRITE(IOS,1001)
      CALL LCMGET(KEN(1),'E-KEFF',EVL)
      CALL LCMGET(KEN(1),'LAMBDA-D',PDC)
      CALL LCMGET(KEN(1),'E-IDLPC',IDLPC)
      CALL LCMLEN(KEN(1),'OMEGA',ILONG,ITYLCM)
      IF((IEXP.EQ.0).OR.(ILONG.EQ.0)) THEN
        OMEGA(:NBM,:NGR)=0.0
      ELSE
        CALL LCMGET(KEN(1),'OMEGA',OMEGA)
      ENDIF
      CALL LCMGET(KEN(3),'VOLUME',VOL)
      CALL LCMGET(KEN(3),'MATCOD',MAT)
      CALL LCMGET(KEN(3),'KEYFLX',IDL)
*----
*  RECOVER CROSS SECTIONS (BEGINNING-OF-STEP)
*----
      ALLOCATE(DNF(NDG),DNS(NGR,NDG))
      CALL LCMLEN(KEN(1),'BETA-D',LEN,ITYL)
      LNUD=(LEN.EQ.NDG)
      IF(LNUD) CALL LCMGET(KEN(1),'BETA-D',DNF)
      CALL LCMLEN(KEN(1),'CHI-D',LEN,ITYL)
      LCHD=(LEN.EQ.NGR*NDG)
      IF(LCHD) CALL LCMGET(KEN(1),'CHI-D',DNS)
      ALLOCATE(OVR(NBM,NGR),CHI(NBM,NBFIS,NGR),CHD(NBM,NBFIS,NGR,NDG),
     1 SGF(NBM,NBFIS,NGR),SGO(NBM,NBFIS,NGR,NDG))
      IF(NEN.EQ.4) THEN
        IPMAC=KEN(2)
        IPSYS=KEN(4)
      ELSE IF(NEN.EQ.6) THEN
        IPMAC=KEN(5)
        IPSYS=KEN(6)
      ENDIF
      CALL KINXSD(IPMAC,NGR,NBM,NBFIS,NDG,EVL,DT,DNF,DNS,LNUD,LCHD,OVR,
     1 CHI,CHD,SGF,SGO)
*----
*  COMPUTE THE SOURCE TERM
*----
      LL4B=LL4
      IF((ITY.EQ.11).OR.(ITY.EQ.13)) LL4B=LL4*NLF/2
      ALLOCATE(PHO(NUN,NGR),SRC(NUN,NGR))
      CALL LCMGET(KEN(1),'E-PREC',PC)
      CALL LCMGET(KEN(1),'E-VECTOR',PHO)
      CALL KINSRC(KEN(3),IPSYS,CMOD,IMPX,IFL,IPR,IEXP,NGR,NBM,NBFIS,NDG,
     1 ITY,LL4B,NUN,NUP,PDC,TTF,TTP,DT,ADJ,OVR,CHI,CHD,SGF,SGO,OMEGA,
     2 PHO,PC,SRC)
*----
*  RECOVER CROSS SECTIONS (END-OF-STEP)
*----
      CALL KINXSD(KEN(2),NGR,NBM,NBFIS,NDG,EVL,DT,DNF,DNS,LNUD,LCHD,
     1 OVR,CHI,CHD,SGF,SGD)
      DEALLOCATE(DNS,DNF)
*----
*  RECOVER THE BEGINNING-OF-STEP FLUX
*----
      IF(IMPX.GT.0)THEN
        CALL KDRCPU(TA2)
        WRITE(IOS,1002) TA2-TA1
        WRITE(IOS,1003)
      ENDIF
      DO 15 IGR=1,NGR
      DO 10 IND=1,NUN
      EVECT(IND,IGR)=PHO(IND,IGR)
   10 CONTINUE
   15 CONTINUE
*----
*  COMPUTE THE FLUX SOLUTION
*----
      IF(CMOD.EQ.'BIVAC')THEN
        IF(ADJ) CALL XABORT('KINDRV: ADJOINT CALCULATION NOT IMPLEMENT'
     1  //'ED WITH BIVAC.')
        CALL KINSLB(KEN(3),KEN(4),KEN(1),LL4B,ITY,NUN,NGR,IFL,IPR,
     1  IEXP,NBM,NBFIS,NDG,ICL1,ICL2,IMPX,IMPH,TITR,EPSOUT,MAXINR,
     2  EPSINR,MAXOUT,PDC,TTF,TTP,DT,OVR,CHI,CHD,SGF,SGD,OMEGA,EVECT,
     3  SRC)
      ELSEIF(CMOD.EQ.'TRIVAC')THEN
        CALL KINSLT(KEN(3),KEN(4),KEN(1),LL4B,ITY,NUN,NGR,IFL,IPR,
     1  IEXP,NBM,NBFIS,NDG,ICL1,ICL2,IMPX,IMPH,TITR,EPSOUT,MAXINR,
     2  EPSINR,NADI,ADJ,MAXOUT,PDC,TTF,TTP,DT,OVR,CHI,CHD,SGF,SGD,
     3  OMEGA,EVECT,SRC)
      ENDIF
      DEALLOCATE(SRC)
*----
*  COMPUTE THE PRECURSOR SOLUTION
*----
      CALL KINPRC(KEN(3),KEN(4),CMOD,NGR,NBM,NBFIS,NDG,NEL,LL4,NUN,NUP,
     1 MAT,VOL,IDLPC,EVECT,PHO,CHD,CHO,SGD,SGO,PDC,DT,ADJ,TTP,PC,IPR,
     2 IEXP,OMEGA,IMPX)
      CALL LCMPUT(KEN(1),'E-PREC',NDG*NUP*NBFIS,2,PC)
*----
*  COMPUTE THE EXPONENTIAL TRANSFORMATION FACTORS
*----
      IF(IEXP.EQ.1) THEN
        ALLOCATE(WORK1(LL4),RM(LL4),AVG1(NBM),AVG2(NBM))
        DO 35 IGR=1,NGR
        DO 20 IBM=1,NBM
        AVG1(IBM)=EXP(OMEGA(IBM,IGR)*DT)
   20   CONTINUE
        IF(CMOD.EQ.'BIVAC')THEN
          CALL KINBLM(KEN(3),NBM,LL4,AVG1,EVECT(1,IGR),WORK1)
          CALL MTLDLS('RM',KEN(3),KEN(4),LL4,1,WORK1)
        ELSEIF(CMOD.EQ.'TRIVAC')THEN
          CALL KINTLM(KEN(3),NBM,LL4,AVG1,EVECT(1,IGR),WORK1)
          CALL LCMLEN(KEN(4),'RM',ILONG,ITYLCM)
          CALL LCMGET(KEN(4),'RM',RM)
          DO 25 IND=1,ILONG
          FACT=RM(IND)
          IF(FACT.EQ.0.0) CALL XABORT('KINDRV: SINGULAR RM.')
          WORK1(IND)=WORK1(IND)/FACT
   25     CONTINUE
        ENDIF
        DO 30 IND=1,LL4
        EVECT(IND,IGR)=WORK1(IND)
   30   CONTINUE
   35   CONTINUE
        CALL LCMPUT(KEN(1),'E-VECTOR',NGR*NUN,2,EVECT)
*
        DO 60 IGR=1,NGR
        AVG1(:NBM)=0.0
        AVG2(:NBM)=0.0
        DO 40 IEL=1,NEL
        IBM=MAT(IEL)
        IF(IBM.GT.0) THEN
          AVG1(IBM)=AVG1(IBM)+VOL(IEL)*PHO(IDL(IEL),IGR)
          AVG2(IBM)=AVG2(IBM)+VOL(IEL)*EVECT(IDL(IEL),IGR)
        ENDIF
   40   CONTINUE
        DO 50 IBM=1,NBM
        RATIO=MIN(10.0,ABS(AVG2(IBM)/AVG1(IBM)))
        OMEGA(IBM,IGR)=LOG(RATIO)/DT
   50   CONTINUE
        IF(IMPX.GT.1) THEN
          WRITE(IOS,1006) (OMEGA(IBM,IGR),IBM=1,NBM)
        ENDIF
   60   CONTINUE
        CALL LCMPUT(KEN(1),'OMEGA',NBM*NGR,2,OMEGA)
        DEALLOCATE(AVG2,AVG1,RM,WORK1)
      ENDIF
*----
*  COMPUTE AVERAGED FLUX VALUES.
*----
      DO 70 IGR=1,NGR
      IF(CMOD.EQ.'BIVAC')THEN
        CALL FLDBIV(KEN(3),NEL,NUP,EVECT(1,IGR),MAT,VOL,IDL)
      ELSEIF(CMOD.EQ.'TRIVAC')THEN
        CALL FLDTRI(KEN(3),NEL,NUP,EVECT(1,IGR),MAT,VOL,IDL)
      ENDIF
   70 CONTINUE
      CALL LCMPUT(KEN(1),'E-VECTOR',NGR*NUN,2,EVECT)
*----
*  FIND THE MAXIMUM FLUX VALUE
*----
      FMAX=0.0
      IDMX=0
      DO 85 IGR=1,NGR
      DO 80 IEL=1,NEL
      IND=IDL(IEL)
      IF(IND.EQ.0) GO TO 80
      IF(ABS(EVECT(IND,IGR)).GT.FMAX) THEN
        FMAX=EVECT(IND,IGR)
        IDMX=IEL
        IGMX=IGR
      ENDIF
   80 CONTINUE
   85 CONTINUE
      IF(IDMX.EQ.0) CALL XABORT('KINDRV: UNABLE TO SET FMAX.')
      IND=IDLPC(IDMX)
      IF(IND.EQ.0) CALL XABORT('KINDRV: UNABLE TO SET PMAX.')
      DO 95 IFIS=1,NBFIS
      DO 90 IDG=1,NDG
      PMAX(IDG,IFIS)=PC(IND,IDG,IFIS)
   90 CONTINUE
   95 CONTINUE
      IF(IMPX.GT.0) THEN
        WRITE(IOS,1004) FMAX,IDMX,IGMX
        CALL KDRCPU(TK2)
        WRITE(IOS,1005)TK2-TK1
      ENDIF
      CALL LCMPUT(KEN(1),'CTRL-FLUX',1,2,FMAX)
      CALL LCMPUT(KEN(1),'CTRL-PREC',NDG*NBFIS,2,PMAX)
      CALL LCMPUT(KEN(1),'CTRL-IDL',1,1,IDMX)
      CALL LCMPUT(KEN(1),'CTRL-IGR',1,1,IGMX)
*----
*  COMPUTE REACTOR POWER
*----
      IF(INORM.EQ.3) THEN
        CALL KINPOW(KEN(2),NGR,NBM,NUN,NEL,MAT,VOL,IDL,EVECT,POWTOT)
        CALL LCMPUT(KEN(1),'E-POW',1,2,POWTOT)
        IF(IMPX.GT.0) WRITE(6,*) 'REACTOR POWER (MW) =',POWTOT
      ENDIF
*----
*  SCRATCH STORAGE DEALLOCATION
*----
      DEALLOCATE(PHO,SGO,SGF,CHD,CHI,OVR)
      DEALLOCATE(OMEGA,SGD,PC,EVECT)
      RETURN
*
 1001 FORMAT(/1X,'=> ASSEMBLY OF THE SYSTEM MATRICES'/)
 1002 FORMAT(/1X,'TOTAL CPU TIME USED FOR THE ASSEMBLING',
     1 1X,'OF ALL SYSTEM MATRICES =',F6.3/)
 1003 FORMAT(/1X,'=> COMPUTING THE KINETICS SOLUTION'/)
 1004 FORMAT(/1X,'CONTROLLING PARAMETERS:',2X,'MAX-VA',
     1 'L',1X,1PE12.5,3X,'IDL #',I5.5,3X,'IGR #',I2.2/)
 1005 FORMAT(/1X,'TOTAL CPU TIME USED FOR KINETICS CALC',
     1 'ULATIONS =',F10.3//1X,'=> SPACE-TIME',1X,
     2 'KINETICS CALCULATION IS DONE.')
 1006 FORMAT(39H KINDRV: MIXTURE-ORDERED OMEGA FACTORS:/(1P,10E14.6))
      END