1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
|
*DECK GPTLIV
SUBROUTINE GPTLIV(IPTRK,IPSYS,IPFLUP,LADJ,LL4,ITY,NUN,NGRP,ICL1,
1 ICL2,IMPX,IMPH,TITR,NADI,MAXINR,MAXX0,EPS2,EPSINR,EVAL,EVECT,
2 ADECT,EASS,SOUR,TKT,TKB,ZNORM,M)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Solution of a multigroup fixed source eigenvalue problem for the
* calculation of a gpt solution in Trivac. Use the preconditioned power
* method with two parameter SVAT acceleration.
*
*Copyright:
* Copyright (C) 2019 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IPTRK L_TRACK pointer to the tracking information.
* IPSYS L_SYSTEM pointer to system matrices.
* IPFLUP L_FLUX pointer to the gpt solution
* LADJ flag set to .TRUE. for adjoint solution acceleration.
* LL4 order of the system matrices.
* ITY type of solution (2: classical Trivac; 3: Thomas-Raviart).
* NUN number of unknowns in each energy group.
* NGRP number of energy groups.
* ICL1 number of free up-scattering iterations in one cycle of the
* inverse power method.
* ICL2 number of accelerated up-scattering iterations in one cycle.
* IMPX print parameter. =0: no print; =1: minimum printing;
* =2: iteration history is printed; =3: solution is printed.
* IMPH =0: no action is taken
* =1: the flux is compared to a reference flux stored on lcm
* =2: the convergence histogram is printed
* =3: the convergence histogram is printed with axis and
* titles. the plotting file is completed
* =4: the convergence histogram is printed with axis, acce-
* leration factors and titles. the plotting file is
* completed.
* TITR character*72 title
* NADI initial number of inner ADI iterations per outer iteration.
* MAXINR maximum number of thermal iterations.
* EPSINR thermal iteration epsilon.
* EVAL eigenvalue.
* EVECT unknown vector for the non perturbed direct flux
* ADECT unknown vector for the non perturbed adjoint flux
* EASS solution of the fixed source eigenvalue problem
* SOUR fixed source
*
*Parameters: input/output
* TKT CPU time spent to compute the solution of linear systems.
* TKB CPU time spent to compute the bilinear products.
* ZNORM Hotelling deflation accuracy.
* M number of iterations.
*
*-----------------------------------------------------------------------
*
USE GANLIB
*----
* SUBROUTINE ARGUMENTS
*----
TYPE(C_PTR) IPTRK,IPSYS,IPFLUP
CHARACTER TITR*72
LOGICAL LADJ
INTEGER LL4,ITY,NUN,NGRP,ICL1,ICL2,IMPX,IMPH,NNADI,MAXINR,MAXX0,M
REAL EPS2,EPSINR,EVECT(NUN,NGRP),ADECT(NUN,NGRP),EASS(NUN,NGRP),
1 SOUR(NUN,NGRP),TKT,TKB
DOUBLE PRECISION EVAL,ZNORM
*----
* LOCAL VARIABLES
*----
CHARACTER*12 TEXT12
LOGICAL LGAR1,LOGTES,LMPH
DOUBLE PRECISION D2F(2,3),ALP,BET
REAL ERR(250),ALPH(250),BETA(250)
REAL, DIMENSION(:,:), ALLOCATABLE :: GRAD1,GRAD2,GAR1,GAR2,GAR3
REAL, DIMENSION(:), ALLOCATABLE :: WORK1,WORK2
REAL, DIMENSION(:), POINTER :: AGAR
TYPE(C_PTR) AGAR_PTR
*----
* SCRATCH STORAGE ALLOCATION
*----
ALLOCATE(GRAD1(NUN,NGRP),GRAD2(NUN,NGRP),GAR1(NUN,NGRP),
1 GAR2(NUN,NGRP),GAR3(NUN,NGRP),WORK1(NUN),WORK2(NUN))
*
TEST=0.0
ISTART=1
NNADI=NADI
IF(IMPX.GE.2) WRITE(6,500)
M=0
100 M=M+1
*
LGAR1=(MOD(M-ISTART+1,ICL1+ICL2).EQ.1).OR.(M.EQ.1)
CALL GPTGRA(IPTRK,IPSYS,IPFLUP,LADJ,LGAR1,LL4,ITY,NUN,NGRP,ICL1,
1 ICL2,IMPX,NNADI,MAXINR,EPSINR,EVAL,EVECT,ADECT,EASS,SOUR,GAR1,
2 ITER,TKT,TKB,ZNORM,GRAD1)
*----
* EVALUATION OF THE DISPLACEMENT AND OF THE TWO ACCELERATION PARAMETERS
* ALP AND BET.
*----
ALP=1.0D0
BET=0.0D0
DO 240 I=1,2
DO 230 J=1,3
D2F(I,J)=0.0D0
230 CONTINUE
240 CONTINUE
DO 285 IGR=1,NGRP
WRITE(TEXT12,'(1HA,2I3.3)') IGR,IGR
CALL MTLDLM(TEXT12,IPTRK,IPSYS,LL4,ITY,GRAD1(1,IGR),GAR2(1,IGR))
DO 280 JGR=1,NGRP
IF(JGR.EQ.IGR) GO TO 260
IF(LADJ) THEN
WRITE(TEXT12,'(1HA,2I3.3)') JGR,IGR
ELSE
WRITE(TEXT12,'(1HA,2I3.3)') IGR,JGR
ENDIF
CALL LCMLEN(IPSYS,TEXT12,ILONG,ITYLCM)
IF(ILONG.EQ.0) GO TO 260
IF(ITY.EQ.13) THEN
CALL MTLDLM(TEXT12,IPTRK,IPSYS,LL4,ITY,GRAD1(1,JGR),WORK1(1))
DO 245 I=1,LL4
GAR2(I,IGR)=GAR2(I,IGR)-WORK1(I)
245 CONTINUE
ELSE
CALL LCMGPD(IPSYS,TEXT12,AGAR_PTR)
CALL C_F_POINTER(AGAR_PTR,AGAR,(/ NUN /))
DO 250 I=1,ILONG
GAR2(I,IGR)=GAR2(I,IGR)-AGAR(I)*GRAD1(I,JGR)
250 CONTINUE
ENDIF
260 IF(LADJ) THEN
WRITE(TEXT12,'(1HB,2I3.3)') JGR,IGR
ELSE
WRITE(TEXT12,'(1HB,2I3.3)') IGR,JGR
ENDIF
CALL LCMLEN(IPSYS,TEXT12,ILONG,ITYLCM)
IF(ILONG.EQ.0) GO TO 280
CALL LCMGPD(IPSYS,TEXT12,AGAR_PTR)
CALL C_F_POINTER(AGAR_PTR,AGAR,(/ NUN /))
DO 270 I=1,ILONG
GAR2(I,IGR)=GAR2(I,IGR)-REAL(EVAL)*AGAR(I)*GRAD1(I,JGR)
270 CONTINUE
280 CONTINUE
285 CONTINUE
IF(1+MOD(M-ISTART,ICL1+ICL2).GT.ICL1) THEN
DO 295 IGR=1,NGRP
DO 290 I=1,LL4
D2F(1,1)=D2F(1,1)+GAR2(I,IGR)**2
D2F(1,2)=D2F(1,2)+GAR2(I,IGR)*GAR3(I,IGR)
D2F(2,2)=D2F(2,2)+GAR3(I,IGR)**2
D2F(1,3)=D2F(1,3)-(GAR1(I,IGR)+SOUR(I,IGR))*GAR2(I,IGR)
D2F(2,3)=D2F(2,3)-(GAR1(I,IGR)+SOUR(I,IGR))*GAR3(I,IGR)
290 CONTINUE
295 CONTINUE
D2F(2,1)=D2F(1,2)
* SOLUTION OF A LINEAR SYSTEM.
CALL ALSBD(2,1,D2F,IER,2)
IF(IER.NE.0) CALL XABORT('GPTLIV: SINGULAR MATRIX.')
ALP=D2F(1,3)
BET=D2F(2,3)/ALP
IF((ALP.LT.1.0D0).AND.(ALP.GT.0.0D0)) THEN
ALP=1.0D0
BET=0.0D0
ELSE IF(ALP.LE.0.0D0) THEN
ISTART=M+1
ALP=1.0D0
BET=0.0D0
ENDIF
DO 305 IGR=1,NGRP
DO 300 I=1,LL4
GRAD1(I,IGR)=REAL(ALP)*(GRAD1(I,IGR)+REAL(BET)*GRAD2(I,IGR))
GAR2(I,IGR)=REAL(ALP)*(GAR2(I,IGR)+REAL(BET)*GAR3(I,IGR))
300 CONTINUE
305 CONTINUE
ENDIF
*
LOGTES=(M.LT.ICL1).OR.(MOD(M-ISTART,ICL1+ICL2).EQ.ICL1-1)
IF(LOGTES) THEN
DELT=0.0
DO 350 IGR=1,NGRP
WORK1(:LL4)=0.0
WORK2(:LL4)=0.0
DO 320 JGR=1,NGRP
IF(LADJ) THEN
WRITE(TEXT12,'(1HB,2I3.3)') JGR,IGR
ELSE
WRITE(TEXT12,'(1HB,2I3.3)') IGR,JGR
ENDIF
CALL LCMLEN(IPSYS,TEXT12,ILONG,ITYLCM)
IF(ILONG.EQ.0) GO TO 320
CALL LCMGPD(IPSYS,TEXT12,AGAR_PTR)
CALL C_F_POINTER(AGAR_PTR,AGAR,(/ NUN /))
DO 310 I=1,ILONG
WORK1(I)=WORK1(I)+AGAR(I)*EASS(I,JGR)
WORK2(I)=WORK2(I)+AGAR(I)*GRAD1(I,JGR)
310 CONTINUE
320 CONTINUE
DELN=0.0
DELD=0.0
DO 340 I=1,LL4
EASS(I,IGR)=EASS(I,IGR)+GRAD1(I,IGR)
GAR1(I,IGR)=GAR1(I,IGR)+GAR2(I,IGR)
GRAD2(I,IGR)=GRAD1(I,IGR)
GAR3(I,IGR)=GAR2(I,IGR)
DELN=MAX(DELN,ABS(WORK2(I)))
DELD=MAX(DELD,ABS(WORK1(I)))
340 CONTINUE
IF(DELD.NE.0.0) DELT=MAX(DELT,DELN/DELD)
350 CONTINUE
IF(IMPX.GE.2) WRITE(6,510) M,ALP,BET,ZNORM,DELT,ITER
* COMPUTE THE CONVERGENCE HISTOGRAM.
IF(IMPH.GE.1) THEN
LMPH=IMPH.GE.1
CALL FLDXCO(IPFLUP,LL4,NUN,EASS(1,NGRP),LMPH,ERR(M))
ALPH(M)=REAL(ALP)
BETA(M)=REAL(BET)
ENDIF
IF(DELT.LT.EPS2) GO TO 370
ELSE
DO 365 IGR=1,NGRP
DO 360 I=1,LL4
EASS(I,IGR)=EASS(I,IGR)+GRAD1(I,IGR)
GAR1(I,IGR)=GAR1(I,IGR)+GAR2(I,IGR)
GRAD2(I,IGR)=GRAD1(I,IGR)
GAR3(I,IGR)=GAR2(I,IGR)
360 CONTINUE
365 CONTINUE
IF(IMPX.GE.2) WRITE(6,510) M,ALP,BET,ZNORM,0.0,ITER
* COMPUTE THE CONVERGENCE HISTOGRAM.
IF(IMPH.GE.1) THEN
LMPH=IMPH.GE.1
CALL FLDXCO(IPFLUP,LL4,NUN,EASS(1,NGRP),LMPH,ERR(M))
ALPH(M)=REAL(ALP)
BETA(M)=REAL(BET)
ENDIF
ENDIF
IF(M.EQ.1) TEST=DELT
IF((M.GT.20).AND.(DELT.GT.TEST)) CALL XABORT('GPTLIV: CONVERGENC'
1 //'E FAILURE.')
IF(M.GE.MAXX0) THEN
WRITE(6,520)
GO TO 370
ENDIF
IF(MOD(M,36).EQ.0) THEN
ISTART=M+1
NNADI=NNADI+1
IF(IMPX.NE.0) WRITE(6,530) NNADI
ENDIF
GO TO 100
*----
* SAVE THE CONVERGENCE HISTOGRAM ON LCM.
*----
370 IF(IMPH.GE.2) THEN
IGRAPH=0
390 IGRAPH=IGRAPH+1
WRITE(TEXT12,'(5HHISTO,I3)') IGRAPH
CALL LCMLEN (IPFLUP,TEXT12,ILENG,ITYLCM)
IF(ILENG.EQ.0) THEN
CALL LCMSIX (IPFLUP,TEXT12,1)
CALL LCMPTC (IPFLUP,'HTITLE',72,TITR)
CALL LCMPUT (IPFLUP,'ALPHA',M,2,ALPH)
CALL LCMPUT (IPFLUP,'BETA',M,2,BETA)
CALL LCMPUT (IPFLUP,'ERROR',M,2,ERR)
CALL LCMPUT (IPFLUP,'IMPH',1,1,IMPH)
CALL LCMSIX (IPFLUP,' ',2)
ELSE
GO TO 390
ENDIF
ENDIF
DEALLOCATE(WORK2,WORK1,GAR3,GAR2,GAR1,GRAD2,GRAD1)
RETURN
*
500 FORMAT (/29X,15HORTHONORMALIZA-/11X,5HALPHA,3X,4HBETA,6X,
1 11HTION FACTOR,6X,8HACCURACY,5X,7HTHERMAL)
510 FORMAT (1X,I3,4X,2F8.3,1P,E14.2,6X,E10.2,5X,1H(,I4,1H))
520 FORMAT(/53H GPTLIV: ***WARNING*** THE MAXIMUM NUMBER OF OUTER IT,
1 20HERATIONS IS REACHED.)
530 FORMAT(/53H GPTLIV: INCREASING THE NUMBER OF INNER ITERATIONS TO,
1 I3,36H ADI ITERATIONS PER OUTER ITERATION./)
END
|