1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
|
*DECK GPTGRA
SUBROUTINE GPTGRA(IPTRK,IPSYS,IPFLUP,LADJ,LGAR1,LL4,ITY,NUN,NGRP,
1 ICL1,ICL2,IMPX,NNADI,MAXINR,EPSINR,EVAL,EVECT,ADECT,EASS,SOUR,
2 GAR1,ITER,TKT,TKB,ZNORM,GRAD)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Compute multigroup delta flux in a fixed source eigenvalue iteration.
*
*Copyright:
* Copyright (C) 2019 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IPTRK L_TRACK pointer to the tracking information.
* IPSYS L_SYSTEM pointer to system matrices.
* IPFLUP L_FLUX pointer to the gpt solution
* LADJ flag set to .TRUE. for adjoint solution acceleration.
* LGAR1 flag set to .TRUE. for recomputing GAR1.
* LL4 order of the system matrices.
* ITY type of solution (2: classical Trivac; 3: Thomas-Raviart).
* NUN number of unknowns in each energy group.
* NGRP number of energy groups.
* ICL1 number of free up-scattering iterations in one cycle of the
* inverse power method.
* ICL2 number of accelerated up-scattering iterations in one cycle.
* IMPX print parameter (set to 0 for no printing).
* NNADI number of inner ADI iterations per outer iteration.
* MAXINR maximum number of thermal iterations.
* EPSINR thermal iteration epsilon.
* EVAL eigenvalue.
* EVECT unknown vector for the non perturbed direct flux
* ADECT unknown vector for the non perturbed adjoint flux
* EASS solution of the fixed source eigenvalue problem
* SOUR fixed source
* GAR1 delta flux for this iteration before Hotelling deflation.
*
*Parameters: input/output
* ITER actual number of thermal iterations.
* TKT CPU time spent to compute the solution of linear systems.
* TKB CPU time spent to compute the bilinear products.
* ZNORM Hotelling deflation accuracy.
* GRAD delta flux for this iteration.
*
*-----------------------------------------------------------------------
*
USE GANLIB
*----
* SUBROUTINE ARGUMENTS
*----
TYPE(C_PTR) IPTRK,IPSYS,IPFLUP
LOGICAL LADJ,LGAR1
INTEGER LL4,ITY,NUN,NGRP,ICL1,ICL2,IMPX,NNADI,MAXINR,ITER
REAL EPSINR,EVECT(NUN,NGRP),ADECT(NUN,NGRP),EASS(NUN,NGRP),
1 SOUR(NUN,NGRP),GAR1(NUN,NGRP),TKT,TKB,GRAD(NUN,NGRP)
DOUBLE PRECISION EVAL,ZNORM
*----
* LOCAL VARIABLES
*----
CHARACTER*12 TEXT12
DOUBLE PRECISION DDELN1,DDELD1
REAL, DIMENSION(:), ALLOCATABLE :: WORK1,WORK3
REAL, DIMENSION(:), POINTER :: AGAR
TYPE(C_PTR) AGAR_PTR
*----
* SCRATCH STORAGE ALLOCATION
*----
ALLOCATE(WORK1(NUN))
*
IF(LADJ) THEN
CALL KDRCPU(TK1)
* ADJOINT SOLUTION
IF(LGAR1) THEN
DO 55 IGR=1,NGRP
WRITE(TEXT12,'(1HA,2I3.3)') IGR,IGR
CALL MTLDLM(TEXT12,IPTRK,IPSYS,LL4,ITY,EASS(1,IGR),
1 GAR1(1,IGR))
DO 50 JGR=1,NGRP
IF(JGR.EQ.IGR) GO TO 30
WRITE(TEXT12,'(1HA,2I3.3)') JGR,IGR
CALL LCMLEN(IPSYS,TEXT12,ILONG,ITYLCM)
IF(ILONG.EQ.0) GO TO 30
IF(ITY.EQ.13) THEN
ALLOCATE(WORK3(LL4))
CALL MTLDLM(TEXT12,IPTRK,IPSYS,LL4,ITY,EASS(1,JGR),
1 WORK3(1))
DO 10 I=1,LL4
GAR1(I,IGR)=GAR1(I,IGR)-WORK3(I)
10 CONTINUE
DEALLOCATE(WORK3)
ELSE
CALL LCMGPD(IPSYS,TEXT12,AGAR_PTR)
CALL C_F_POINTER(AGAR_PTR,AGAR,(/ NUN /))
DO 20 I=1,ILONG
GAR1(I,IGR)=GAR1(I,IGR)-AGAR(I)*EASS(I,JGR)
20 CONTINUE
ENDIF
30 WRITE(TEXT12,'(1HB,2I3.3)') JGR,IGR
CALL LCMLEN(IPSYS,TEXT12,ILONG,ITYLCM)
IF(ILONG.EQ.0) GO TO 50
CALL LCMGPD(IPSYS,TEXT12,AGAR_PTR)
CALL C_F_POINTER(AGAR_PTR,AGAR,(/ NUN /))
DO 40 I=1,ILONG
GAR1(I,IGR)=GAR1(I,IGR)-REAL(EVAL)*AGAR(I)*EASS(I,JGR)
40 CONTINUE
50 CONTINUE
55 CONTINUE
ENDIF
*----
* DIRECTION EVALUATION.
*----
DO 100 IGR=NGRP,1,-1
DO 60 I=1,LL4
GRAD(I,IGR)=-SOUR(I,IGR)-GAR1(I,IGR)
60 CONTINUE
DO 90 JGR=NGRP,IGR+1,-1
WRITE(TEXT12,'(1HA,2I3.3)') JGR,IGR
CALL LCMLEN(IPSYS,TEXT12,ILONG,ITYLCM)
IF(ILONG.EQ.0) GO TO 90
IF(ITY.EQ.13) THEN
CALL MTLDLM(TEXT12,IPTRK,IPSYS,LL4,ITY,GRAD(1,JGR),WORK1(1))
DO 70 I=1,LL4
GRAD(I,IGR)=GRAD(I,IGR)+WORK1(I)
70 CONTINUE
ELSE
CALL LCMGPD(IPSYS,TEXT12,AGAR_PTR)
CALL C_F_POINTER(AGAR_PTR,AGAR,(/ NUN /))
DO 80 I=1,ILONG
GRAD(I,IGR)=GRAD(I,IGR)+AGAR(I)*GRAD(I,JGR)
80 CONTINUE
ENDIF
90 CONTINUE
*
WRITE(TEXT12,'(1HA,2I3.3)') IGR,IGR
CALL FLDADI(TEXT12,IPTRK,IPSYS,LL4,ITY,GRAD(1,IGR),NNADI)
100 CONTINUE
CALL KDRCPU(TK2)
TKB=TKB+(TK2-TK1)
*----
* PERFORM THERMAL (UP-SCATTERING) ITERATIONS
*----
ITER=1
IF(MAXINR.GT.1) THEN
CALL FLDTHR(IPTRK,IPSYS,IPFLUP,.TRUE.,LL4,ITY,NUN,NGRP,
1 ICL1,ICL2,IMPX,NNADI,0,MAXINR,EPSINR,ITER,TKT,TKB,GRAD)
ENDIF
*----
* HOTELLING DEFLATION.
*----
CALL KDRCPU(TK1)
DDELN1=0.0D0
DDELD1=0.0D0
DO 135 IGR=1,NGRP
WORK1(:LL4)=0.0
DO 120 JGR=1,NGRP
WRITE(TEXT12,'(1HB,2I3.3)') IGR,JGR
CALL LCMLEN(IPSYS,TEXT12,ILONG,ITYLCM)
IF(ILONG.EQ.0) GO TO 120
CALL LCMGPD(IPSYS,TEXT12,AGAR_PTR)
CALL C_F_POINTER(AGAR_PTR,AGAR,(/ NUN /))
DO 110 I=1,ILONG
WORK1(I)=WORK1(I)+AGAR(I)*EVECT(I,JGR)
110 CONTINUE
120 CONTINUE
DO 130 I=1,LL4
DDELN1=DDELN1+WORK1(I)*EASS(I,IGR)
DDELD1=DDELD1+WORK1(I)*ADECT(I,IGR)
130 CONTINUE
135 CONTINUE
ZNORM=DDELN1/DDELD1
DO 145 IGR=1,NGRP
DO 140 I=1,LL4
GRAD(I,IGR)=GRAD(I,IGR)-REAL(ZNORM)*ADECT(I,IGR)
140 CONTINUE
145 CONTINUE
CALL KDRCPU(TK2)
TKB=TKB+(TK2-TK1)
ELSE
CALL KDRCPU(TK1)
* DIRECT SOLUTION
IF(LGAR1) THEN
DO 195 IGR=1,NGRP
WRITE(TEXT12,'(1HA,2I3.3)') IGR,IGR
CALL MTLDLM(TEXT12,IPTRK,IPSYS,LL4,ITY,EASS(1,IGR),
1 GAR1(1,IGR))
DO 190 JGR=1,NGRP
IF(JGR.EQ.IGR) GO TO 170
WRITE(TEXT12,'(1HA,2I3.3)') IGR,JGR
CALL LCMLEN(IPSYS,TEXT12,ILONG,ITYLCM)
IF(ILONG.EQ.0) GO TO 170
IF(ITY.EQ.13) THEN
ALLOCATE(WORK3(LL4))
CALL MTLDLM(TEXT12,IPTRK,IPSYS,LL4,ITY,EASS(1,JGR),
1 WORK3(1))
DO 150 I=1,LL4
GAR1(I,IGR)=GAR1(I,IGR)-WORK3(I)
150 CONTINUE
DEALLOCATE(WORK3)
ELSE
CALL LCMGPD(IPSYS,TEXT12,AGAR_PTR)
CALL C_F_POINTER(AGAR_PTR,AGAR,(/ NUN /))
DO 160 I=1,ILONG
GAR1(I,IGR)=GAR1(I,IGR)-AGAR(I)*EASS(I,JGR)
160 CONTINUE
ENDIF
170 WRITE(TEXT12,'(1HB,2I3.3)') IGR,JGR
CALL LCMLEN(IPSYS,TEXT12,ILONG,ITYLCM)
IF(ILONG.EQ.0) GO TO 190
CALL LCMGPD(IPSYS,TEXT12,AGAR_PTR)
CALL C_F_POINTER(AGAR_PTR,AGAR,(/ NUN /))
DO 180 I=1,ILONG
GAR1(I,IGR)=GAR1(I,IGR)-REAL(EVAL)*AGAR(I)*EASS(I,JGR)
180 CONTINUE
190 CONTINUE
195 CONTINUE
ENDIF
*----
* DIRECTION EVALUATION.
*----
DO 240 IGR=1,NGRP
DO 200 I=1,LL4
GRAD(I,IGR)=-SOUR(I,IGR)-GAR1(I,IGR)
200 CONTINUE
DO 230 JGR=1,IGR-1
WRITE(TEXT12,'(1HA,2I3.3)') IGR,JGR
CALL LCMLEN(IPSYS,TEXT12,ILONG,ITYLCM)
IF(ILONG.EQ.0) GO TO 230
IF(ITY.EQ.13) THEN
CALL MTLDLM(TEXT12,IPTRK,IPSYS,LL4,ITY,GRAD(1,JGR),WORK1(1))
DO 210 I=1,LL4
GRAD(I,IGR)=GRAD(I,IGR)+WORK1(I)
210 CONTINUE
ELSE
CALL LCMGPD(IPSYS,TEXT12,AGAR_PTR)
CALL C_F_POINTER(AGAR_PTR,AGAR,(/ NUN /))
DO 220 I=1,ILONG
GRAD(I,IGR)=GRAD(I,IGR)+AGAR(I)*GRAD(I,JGR)
220 CONTINUE
ENDIF
230 CONTINUE
*
WRITE(TEXT12,'(1HA,2I3.3)') IGR,IGR
CALL FLDADI(TEXT12,IPTRK,IPSYS,LL4,ITY,GRAD(1,IGR),NNADI)
240 CONTINUE
CALL KDRCPU(TK2)
TKB=TKB+(TK2-TK1)
*----
* PERFORM THERMAL (UP-SCATTERING) ITERATIONS
*----
ITER=1
IF(MAXINR.GT.1) THEN
CALL FLDTHR(IPTRK,IPSYS,IPFLUP,.FALSE.,LL4,ITY,NUN,NGRP,
1 ICL1,ICL2,IMPX,NNADI,0,MAXINR,EPSINR,ITER,TKT,TKB,GRAD)
ENDIF
*----
* HOTELLING DEFLATION.
*----
CALL KDRCPU(TK1)
DDELN1=0.0D0
DDELD1=0.0D0
DO 275 IGR=1,NGRP
WORK1(:LL4)=0.0
DO 260 JGR=1,NGRP
WRITE(TEXT12,'(1HB,2I3.3)') JGR,IGR
CALL LCMLEN(IPSYS,TEXT12,ILONG,ITYLCM)
IF(ILONG.EQ.0) GO TO 260
CALL LCMGPD(IPSYS,TEXT12,AGAR_PTR)
CALL C_F_POINTER(AGAR_PTR,AGAR,(/ NUN /))
DO 250 I=1,ILONG
WORK1(I)=WORK1(I)+AGAR(I)*ADECT(I,JGR)
250 CONTINUE
260 CONTINUE
DO 270 I=1,LL4
DDELN1=DDELN1+WORK1(I)*EASS(I,IGR)
DDELD1=DDELD1+WORK1(I)*EVECT(I,IGR)
270 CONTINUE
275 CONTINUE
ZNORM=DDELN1/DDELD1
DO 285 IGR=1,NGRP
DO 280 I=1,LL4
GRAD(I,IGR)=GRAD(I,IGR)-REAL(ZNORM)*EVECT(I,IGR)
280 CONTINUE
285 CONTINUE
CALL KDRCPU(TK2)
TKB=TKB+(TK2-TK1)
ENDIF
*----
* SCRATCH STORAGE DEALLOCATION
*----
DEALLOCATE(WORK1)
RETURN
END
|