summaryrefslogtreecommitdiff
path: root/Trivac/src/GPTGRA.f
blob: f1867a37c2c4ca2c4fb57811aad223645b2b6a01 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
*DECK GPTGRA
      SUBROUTINE GPTGRA(IPTRK,IPSYS,IPFLUP,LADJ,LGAR1,LL4,ITY,NUN,NGRP,
     1 ICL1,ICL2,IMPX,NNADI,MAXINR,EPSINR,EVAL,EVECT,ADECT,EASS,SOUR,
     2 GAR1,ITER,TKT,TKB,ZNORM,GRAD)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Compute multigroup delta flux in a fixed source eigenvalue iteration.
*
*Copyright:
* Copyright (C) 2019 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IPTRK   L_TRACK pointer to the tracking information.
* IPSYS   L_SYSTEM pointer to system matrices.
* IPFLUP  L_FLUX pointer to the gpt solution
* LADJ    flag set to .TRUE. for adjoint solution acceleration.
* LGAR1   flag set to .TRUE. for recomputing GAR1.
* LL4     order of the system matrices.
* ITY     type of solution (2: classical Trivac; 3: Thomas-Raviart).
* NUN     number of unknowns in each energy group.
* NGRP    number of energy groups.
* ICL1    number of free up-scattering iterations in one cycle of the
*         inverse power method.
* ICL2    number of accelerated up-scattering iterations in one cycle.
* IMPX    print parameter (set to 0 for no printing).
* NNADI   number of inner ADI iterations per outer iteration.
* MAXINR  maximum number of thermal iterations.
* EPSINR  thermal iteration epsilon.
* EVAL    eigenvalue.
* EVECT   unknown vector for the non perturbed direct flux
* ADECT   unknown vector for the non perturbed adjoint flux
* EASS    solution of the fixed source eigenvalue problem
* SOUR    fixed source
* GAR1    delta flux for this iteration before Hotelling deflation.
*
*Parameters: input/output
* ITER    actual number of thermal iterations.
* TKT     CPU time spent to compute the solution of linear systems.
* TKB     CPU time spent to compute the bilinear products.
* ZNORM   Hotelling deflation accuracy.
* GRAD    delta flux for this iteration.
*
*-----------------------------------------------------------------------
*
      USE GANLIB
*----
*  SUBROUTINE ARGUMENTS
*----
      TYPE(C_PTR) IPTRK,IPSYS,IPFLUP
      LOGICAL LADJ,LGAR1
      INTEGER LL4,ITY,NUN,NGRP,ICL1,ICL2,IMPX,NNADI,MAXINR,ITER
      REAL EPSINR,EVECT(NUN,NGRP),ADECT(NUN,NGRP),EASS(NUN,NGRP),
     1 SOUR(NUN,NGRP),GAR1(NUN,NGRP),TKT,TKB,GRAD(NUN,NGRP)
      DOUBLE PRECISION EVAL,ZNORM
*----
*  LOCAL VARIABLES
*----
      CHARACTER*12 TEXT12
      DOUBLE PRECISION DDELN1,DDELD1
      REAL, DIMENSION(:), ALLOCATABLE :: WORK1,WORK3
      REAL, DIMENSION(:), POINTER :: AGAR
      TYPE(C_PTR) AGAR_PTR
*----
*  SCRATCH STORAGE ALLOCATION
*----
      ALLOCATE(WORK1(NUN))
*
      IF(LADJ) THEN
         CALL KDRCPU(TK1)
*        ADJOINT SOLUTION
         IF(LGAR1) THEN
            DO 55 IGR=1,NGRP
            WRITE(TEXT12,'(1HA,2I3.3)') IGR,IGR
            CALL MTLDLM(TEXT12,IPTRK,IPSYS,LL4,ITY,EASS(1,IGR),
     1      GAR1(1,IGR))
            DO 50 JGR=1,NGRP
            IF(JGR.EQ.IGR) GO TO 30
            WRITE(TEXT12,'(1HA,2I3.3)') JGR,IGR
            CALL LCMLEN(IPSYS,TEXT12,ILONG,ITYLCM)
            IF(ILONG.EQ.0) GO TO 30
            IF(ITY.EQ.13) THEN
               ALLOCATE(WORK3(LL4))
               CALL MTLDLM(TEXT12,IPTRK,IPSYS,LL4,ITY,EASS(1,JGR),
     1         WORK3(1))
               DO 10 I=1,LL4
               GAR1(I,IGR)=GAR1(I,IGR)-WORK3(I)
   10          CONTINUE
               DEALLOCATE(WORK3)
            ELSE
               CALL LCMGPD(IPSYS,TEXT12,AGAR_PTR)
               CALL C_F_POINTER(AGAR_PTR,AGAR,(/ NUN /))
               DO 20 I=1,ILONG
               GAR1(I,IGR)=GAR1(I,IGR)-AGAR(I)*EASS(I,JGR)
   20          CONTINUE
            ENDIF
   30       WRITE(TEXT12,'(1HB,2I3.3)') JGR,IGR
            CALL LCMLEN(IPSYS,TEXT12,ILONG,ITYLCM)
            IF(ILONG.EQ.0) GO TO 50
            CALL LCMGPD(IPSYS,TEXT12,AGAR_PTR)
            CALL C_F_POINTER(AGAR_PTR,AGAR,(/ NUN /))
            DO 40 I=1,ILONG
            GAR1(I,IGR)=GAR1(I,IGR)-REAL(EVAL)*AGAR(I)*EASS(I,JGR)
   40       CONTINUE
   50       CONTINUE
   55       CONTINUE
         ENDIF
*----
*  DIRECTION EVALUATION.
*----
         DO 100 IGR=NGRP,1,-1
         DO 60 I=1,LL4
         GRAD(I,IGR)=-SOUR(I,IGR)-GAR1(I,IGR)
   60    CONTINUE
         DO 90 JGR=NGRP,IGR+1,-1
         WRITE(TEXT12,'(1HA,2I3.3)') JGR,IGR
         CALL LCMLEN(IPSYS,TEXT12,ILONG,ITYLCM)
         IF(ILONG.EQ.0) GO TO 90
         IF(ITY.EQ.13) THEN
            CALL MTLDLM(TEXT12,IPTRK,IPSYS,LL4,ITY,GRAD(1,JGR),WORK1(1))
            DO 70 I=1,LL4
            GRAD(I,IGR)=GRAD(I,IGR)+WORK1(I)
   70       CONTINUE
         ELSE
            CALL LCMGPD(IPSYS,TEXT12,AGAR_PTR)
            CALL C_F_POINTER(AGAR_PTR,AGAR,(/ NUN /))
            DO 80 I=1,ILONG
            GRAD(I,IGR)=GRAD(I,IGR)+AGAR(I)*GRAD(I,JGR)
   80       CONTINUE
         ENDIF
   90    CONTINUE
*
         WRITE(TEXT12,'(1HA,2I3.3)') IGR,IGR
         CALL FLDADI(TEXT12,IPTRK,IPSYS,LL4,ITY,GRAD(1,IGR),NNADI)
  100    CONTINUE
         CALL KDRCPU(TK2)
         TKB=TKB+(TK2-TK1)
*----
*  PERFORM THERMAL (UP-SCATTERING) ITERATIONS
*----
         ITER=1
         IF(MAXINR.GT.1) THEN
            CALL FLDTHR(IPTRK,IPSYS,IPFLUP,.TRUE.,LL4,ITY,NUN,NGRP,
     1      ICL1,ICL2,IMPX,NNADI,0,MAXINR,EPSINR,ITER,TKT,TKB,GRAD)
         ENDIF
*----
*  HOTELLING DEFLATION.
*----
         CALL KDRCPU(TK1)
         DDELN1=0.0D0
         DDELD1=0.0D0
         DO 135 IGR=1,NGRP
         WORK1(:LL4)=0.0
         DO 120 JGR=1,NGRP
         WRITE(TEXT12,'(1HB,2I3.3)') IGR,JGR
         CALL LCMLEN(IPSYS,TEXT12,ILONG,ITYLCM)
         IF(ILONG.EQ.0) GO TO 120
         CALL LCMGPD(IPSYS,TEXT12,AGAR_PTR)
         CALL C_F_POINTER(AGAR_PTR,AGAR,(/ NUN /))
         DO 110 I=1,ILONG
         WORK1(I)=WORK1(I)+AGAR(I)*EVECT(I,JGR)
  110    CONTINUE
  120    CONTINUE
         DO 130 I=1,LL4
         DDELN1=DDELN1+WORK1(I)*EASS(I,IGR)
         DDELD1=DDELD1+WORK1(I)*ADECT(I,IGR)
  130    CONTINUE
  135    CONTINUE
         ZNORM=DDELN1/DDELD1
         DO 145 IGR=1,NGRP
         DO 140 I=1,LL4
         GRAD(I,IGR)=GRAD(I,IGR)-REAL(ZNORM)*ADECT(I,IGR)
  140    CONTINUE
  145    CONTINUE
         CALL KDRCPU(TK2)
         TKB=TKB+(TK2-TK1)
      ELSE
         CALL KDRCPU(TK1)
*        DIRECT SOLUTION
         IF(LGAR1) THEN
            DO 195 IGR=1,NGRP
            WRITE(TEXT12,'(1HA,2I3.3)') IGR,IGR
            CALL MTLDLM(TEXT12,IPTRK,IPSYS,LL4,ITY,EASS(1,IGR),
     1      GAR1(1,IGR))
            DO 190 JGR=1,NGRP
            IF(JGR.EQ.IGR) GO TO 170
            WRITE(TEXT12,'(1HA,2I3.3)') IGR,JGR
            CALL LCMLEN(IPSYS,TEXT12,ILONG,ITYLCM)
            IF(ILONG.EQ.0) GO TO 170
            IF(ITY.EQ.13) THEN
               ALLOCATE(WORK3(LL4))
               CALL MTLDLM(TEXT12,IPTRK,IPSYS,LL4,ITY,EASS(1,JGR),
     1         WORK3(1))
               DO 150 I=1,LL4
               GAR1(I,IGR)=GAR1(I,IGR)-WORK3(I)
  150          CONTINUE
               DEALLOCATE(WORK3)
            ELSE
               CALL LCMGPD(IPSYS,TEXT12,AGAR_PTR)
               CALL C_F_POINTER(AGAR_PTR,AGAR,(/ NUN /))
               DO 160 I=1,ILONG
               GAR1(I,IGR)=GAR1(I,IGR)-AGAR(I)*EASS(I,JGR)
  160          CONTINUE
            ENDIF
  170       WRITE(TEXT12,'(1HB,2I3.3)') IGR,JGR
            CALL LCMLEN(IPSYS,TEXT12,ILONG,ITYLCM)
            IF(ILONG.EQ.0) GO TO 190
            CALL LCMGPD(IPSYS,TEXT12,AGAR_PTR)
            CALL C_F_POINTER(AGAR_PTR,AGAR,(/ NUN /))
            DO 180 I=1,ILONG
            GAR1(I,IGR)=GAR1(I,IGR)-REAL(EVAL)*AGAR(I)*EASS(I,JGR)
  180       CONTINUE
  190       CONTINUE
  195       CONTINUE
         ENDIF
*----
*  DIRECTION EVALUATION.
*----
         DO 240 IGR=1,NGRP
         DO 200 I=1,LL4
         GRAD(I,IGR)=-SOUR(I,IGR)-GAR1(I,IGR)
  200    CONTINUE
         DO 230 JGR=1,IGR-1
         WRITE(TEXT12,'(1HA,2I3.3)') IGR,JGR
         CALL LCMLEN(IPSYS,TEXT12,ILONG,ITYLCM)
         IF(ILONG.EQ.0) GO TO 230
         IF(ITY.EQ.13) THEN
            CALL MTLDLM(TEXT12,IPTRK,IPSYS,LL4,ITY,GRAD(1,JGR),WORK1(1))
            DO 210 I=1,LL4
            GRAD(I,IGR)=GRAD(I,IGR)+WORK1(I)
  210       CONTINUE
         ELSE
            CALL LCMGPD(IPSYS,TEXT12,AGAR_PTR)
            CALL C_F_POINTER(AGAR_PTR,AGAR,(/ NUN /))
            DO 220 I=1,ILONG
            GRAD(I,IGR)=GRAD(I,IGR)+AGAR(I)*GRAD(I,JGR)
  220       CONTINUE
         ENDIF
  230    CONTINUE
*
         WRITE(TEXT12,'(1HA,2I3.3)') IGR,IGR
         CALL FLDADI(TEXT12,IPTRK,IPSYS,LL4,ITY,GRAD(1,IGR),NNADI)
  240    CONTINUE
         CALL KDRCPU(TK2)
         TKB=TKB+(TK2-TK1)
*----
*  PERFORM THERMAL (UP-SCATTERING) ITERATIONS
*----
         ITER=1
         IF(MAXINR.GT.1) THEN
            CALL FLDTHR(IPTRK,IPSYS,IPFLUP,.FALSE.,LL4,ITY,NUN,NGRP,
     1      ICL1,ICL2,IMPX,NNADI,0,MAXINR,EPSINR,ITER,TKT,TKB,GRAD)
         ENDIF
*----
*  HOTELLING DEFLATION.
*----
         CALL KDRCPU(TK1)
         DDELN1=0.0D0
         DDELD1=0.0D0
         DO 275 IGR=1,NGRP
         WORK1(:LL4)=0.0
         DO 260 JGR=1,NGRP
         WRITE(TEXT12,'(1HB,2I3.3)') JGR,IGR
         CALL LCMLEN(IPSYS,TEXT12,ILONG,ITYLCM)
         IF(ILONG.EQ.0) GO TO 260
         CALL LCMGPD(IPSYS,TEXT12,AGAR_PTR)
         CALL C_F_POINTER(AGAR_PTR,AGAR,(/ NUN /))
         DO 250 I=1,ILONG
         WORK1(I)=WORK1(I)+AGAR(I)*ADECT(I,JGR)
  250    CONTINUE
  260    CONTINUE
         DO 270 I=1,LL4
         DDELN1=DDELN1+WORK1(I)*EASS(I,IGR)
         DDELD1=DDELD1+WORK1(I)*EVECT(I,IGR)
  270    CONTINUE
  275    CONTINUE
         ZNORM=DDELN1/DDELD1
         DO 285 IGR=1,NGRP
         DO 280 I=1,LL4
         GRAD(I,IGR)=GRAD(I,IGR)-REAL(ZNORM)*EVECT(I,IGR)
  280    CONTINUE
  285    CONTINUE
         CALL KDRCPU(TK2)
         TKB=TKB+(TK2-TK1)
      ENDIF
*----
*  SCRATCH STORAGE DEALLOCATION
*----
      DEALLOCATE(WORK1)
      RETURN
      END