1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
|
*DECK GPTAFL
SUBROUTINE GPTAFL (IPTRK,IPSYS0,IPFLUP,LL4,ITY,NUN,NGRP,ICL1,ICL2,
1 NSTART,IMPX,IMPH,TITR,EPS2,MAXINR,EPSINR,NADI,MAXX0,FKEFF,EVECT,
2 ADECT,FKEFF2,EASS,SOUR)
*
*
*-----------------------------------------------------------------------
*
*Purpose:
* Solution of a multigroup fixed source eigenvalue problem for the
* calculation of an adjoint gpt solution in Trivac. use the precondi-
* tioned power method.
*
*Copyright:
* Copyright (C) 1987 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IPTRK L_TRACK pointer to the tracking information
* IPSYS0 L_SYSTEM pointer to unperturbed system matrices
* IPFLUP L_FLUX pointer to the gpt solution
* LL4 order of the system matrices.
* ITY type of solution (2: classical Trivac; 3: Thomas-Raviart).
* NUN number of unknowns in each energy group.
* NGRP number of energy groups.
* ICL1 number of free iterations in one cycle of the inverse power
* method
* ICL2 number of accelerated iterations in one cycle
* NSTART GMRES method flag. =0: use Livolant acceleration;
* >0: restarts the GMRES method every NSTART iterations.
* IMPX print parameter. =0: no print; =1: minimum printing;
* =2: iteration history is printed; =3: solution is printed.
* IMPH =0: no action is taken
* =1: the flux is compared to a reference flux stored on lcm
* =2: the convergence histogram is printed
* =3: the convergence histogram is printed with axis and
* titles. the plotting file is completed
* =4: the convergence histogram is printed with axis, acce-
* leration factors and titles. the plotting file is
* completed.
* TITR character*72 title
* EPS2 convergence criteria for the flux
* MAXINR maximum number of thermal iterations.
* EPSINR thermal iteration epsilon.
* NADI initial number of inner adi iterations per outer iteration
* MAXX0 maximum number of outer iterations
* FKEFF effective multiplication factor
* EVECT unknown vector for the non perturbed direct flux
* ADECT unknown vector for the non perturbed adjoint flux
* SOUR fixed source
*
*Parameters: output
* FKEFF2 perturbed effective multiplication factor
* EASS converged generalized adjoint
*
*References:
* A. H\'ebert, 'Preconditioning the power method for reactor
* calculations', Nucl. Sci. Eng., 94, 1 (1986).
*
*-----------------------------------------------------------------------
*
USE GANLIB
*----
* SUBROUTINE ARGUMENTS
*----
TYPE(C_PTR) IPTRK,IPSYS0,IPFLUP
CHARACTER TITR*72,HSMG*131
INTEGER LL4,ITY,NUN,NGRP,ICL1,ICL2,NSTART,IMPX,IMPH,MAXINR,NADI,
1 MAXX0
REAL EPS2,EPSINR,FKEFF,EVECT(NUN,NGRP),ADECT(NUN,NGRP),FKEFF2,
1 EASS(NUN,NGRP),SOUR(NUN,NGRP)
*----
* LOCAL VARIABLES
*----
CHARACTER*12 TEXT12
DOUBLE PRECISION AIL,BIL,EVAL,ZNORM,GAZ,DAZ
REAL TKT,TKB
REAL, DIMENSION(:), ALLOCATABLE :: WORK1,WORK3
REAL, DIMENSION(:,:), ALLOCATABLE :: GRAD1,GAR1
REAL, DIMENSION(:), POINTER :: AGAR
TYPE(C_PTR) AGAR_PTR
DATA EPS1/1.0E-4/
*----
* SCRATCH STORAGE ALLOCATION
*----
ALLOCATE(GRAD1(NUN,NGRP),GAR1(NUN,NGRP),WORK1(NUN))
*
CALL MTOPEN(IMPX,IPTRK,LL4)
IF(LL4.GT.NUN) CALL XABORT('DELDFL: INVALID NUMBER OF UNKNOWNS.')
*----
* UNPERTURBED EIGENVALUE CALCULATION.
*----
AIL=0.0D0
BIL=0.0D0
DO 85 IGR=1,NGRP
WRITE(TEXT12,'(1HA,2I3.3)') IGR,IGR
CALL MTLDLM(TEXT12,IPTRK,IPSYS0,LL4,ITY,EVECT(1,IGR),GRAD1(1,IGR))
WORK1(:LL4)=0.0
DO 70 JGR=1,NGRP
IF(JGR.EQ.IGR) GO TO 40
WRITE(TEXT12,'(1HA,2I3.3)') IGR,JGR
CALL LCMLEN(IPSYS0,TEXT12,ILONG,ITYLCM)
IF(ILONG.EQ.0) GO TO 40
IF(ITY.EQ.13) THEN
ALLOCATE(WORK3(LL4))
CALL MTLDLM(TEXT12,IPTRK,IPSYS0,LL4,ITY,EVECT(1,JGR),WORK3(1))
DO 20 I=1,LL4
GRAD1(I,IGR)=GRAD1(I,IGR)-WORK3(I)
20 CONTINUE
DEALLOCATE(WORK3)
ELSE
CALL LCMGPD(IPSYS0,TEXT12,AGAR_PTR)
CALL C_F_POINTER(AGAR_PTR,AGAR,(/ NUN /))
DO 30 I=1,ILONG
GRAD1(I,IGR)=GRAD1(I,IGR)-AGAR(I)*EVECT(I,JGR)
30 CONTINUE
ENDIF
*
40 WRITE(TEXT12,'(1HB,2I3.3)') IGR,JGR
CALL LCMLEN(IPSYS0,TEXT12,ILONG,ITYLCM)
IF(ILONG.EQ.0) GO TO 70
CALL LCMGPD(IPSYS0,TEXT12,AGAR_PTR)
CALL C_F_POINTER(AGAR_PTR,AGAR,(/ NUN /))
DO 60 I=1,ILONG
WORK1(I)=WORK1(I)+AGAR(I)*EVECT(I,JGR)
60 CONTINUE
*
70 CONTINUE
DO 80 I=1,LL4
AIL=AIL+ADECT(I,IGR)*GRAD1(I,IGR)
BIL=BIL+ADECT(I,IGR)*WORK1(I)
80 CONTINUE
85 CONTINUE
EVAL=AIL/BIL
FKEFF2=REAL(1.0D0/EVAL)
IF(ABS(FKEFF-1.0/EVAL).GT.EPS1) CALL XABORT('GPTAFL: THE COMPUTE'
1 //'D AND PROVIDED K-EFFECTIVES ARE INCONSISTENTS.')
*----
* VALIDATION OF THE FIXED SOURCE TERM.
*----
AIL=0.0D0
BIL=0.0D0
DO 95 IGR=1,NGRP
DO 90 I=1,LL4
GAZ=EVECT(I,IGR)*SOUR(I,IGR)
DAZ=EVECT(I,IGR)**2
AIL=AIL+GAZ
BIL=BIL+DAZ
90 CONTINUE
95 CONTINUE
GAZ=ABS(AIL)/ABS(BIL)/REAL(LL4)
IF(AIL.EQ.0.0) THEN
EASS(:NUN,:NGRP)=0.0
FKEFF2=0.0
DEALLOCATE(GRAD1,GAR1,WORK1)
RETURN
ENDIF
IF(IMPX.GE.1) THEN
WRITE(6,'(/28H GPTAFL: ORTHONORMALIZATION=,1P,E11.4)') GAZ
ENDIF
IF(GAZ.GT.EPS2) THEN
WRITE(HSMG,'(46HGPTAFL: THE SOURCE TERM IS NOT ORTHOGONAL TO T,
1 26HHE DIRECT REFERENCE FLUX (,1P,E11.4,2H).)') GAZ
CALL XABORT(HSMG)
ENDIF
*----
* ORTHONORMALIZATION OF THE SOURCE TERM.
*----
AIL=0.0D0
BIL=0.0D0
GAR1(:NUN,:NGRP)=0.0
DO 110 IGR=1,NGRP
DO 100 JGR=1,NGRP
WRITE(TEXT12,'(1HB,2I3.3)') JGR,IGR
CALL LCMLEN(IPSYS0,TEXT12,ILONG,ITYLCM)
IF(ILONG.EQ.0) GO TO 100
CALL LCMGPD(IPSYS0,TEXT12,AGAR_PTR)
CALL C_F_POINTER(AGAR_PTR,AGAR,(/ NUN /))
DO I=1,ILONG
GAR1(I,IGR)=GAR1(I,IGR)+AGAR(I)*ADECT(I,JGR)
ENDDO
100 CONTINUE
DO I=1,LL4
AIL=AIL+EVECT(I,IGR)*SOUR(I,IGR)
BIL=BIL+EVECT(I,IGR)*GAR1(I,IGR)
ENDDO
110 CONTINUE
DO 125 IGR=1,NGRP
DO 120 I=1,LL4
SOUR(I,IGR)=SOUR(I,IGR)-REAL(AIL/BIL)*GAR1(I,IGR)
120 CONTINUE
125 CONTINUE
*----
* SCRATCH STORAGE DEALLOCATION.
*----
DEALLOCATE(GRAD1,GAR1,WORK1)
*----
* LIVOLANT ACCELERATION.
*----
IF(IMPX.GE.1) WRITE (6,600) NADI
IF(NSTART.EQ.0) THEN
CALL GPTLIV(IPTRK,IPSYS0,IPFLUP,.TRUE.,LL4,ITY,NUN,NGRP,ICL1,
1 ICL2,IMPX,IMPH,TITR,NADI,MAXINR,MAXX0,EPS2,EPSINR,EVAL,EVECT,
2 ADECT,EASS,SOUR,TKT,TKB,ZNORM,M)
*----
* GMRES.
*----
ELSE IF(NSTART.GT.0) THEN
CALL GPTMRA(IPTRK,IPSYS0,IPFLUP,.TRUE.,LL4,ITY,NUN,NGRP,ICL1,
1 ICL2,IMPX,NADI,MAXINR,NSTART,MAXX0,EPS2,EPSINR,EVAL,EVECT,ADECT,
2 EASS,SOUR,TKT,TKB,ZNORM,M)
ENDIF
*----
* SOLUTION EDITION.
*----
IF(IMPX.GE.1) WRITE (6,610) M
IF(IMPX.GE.3) THEN
DO 130 IGR=1,NGRP
WRITE (6,620) IGR,(EASS(I,IGR),I=1,LL4)
130 CONTINUE
ENDIF
RETURN
*
600 FORMAT(1H1/50H GPTAFL: ITERATIVE PROCEDURE BASED ON PRECONDITION,
1 17HED POWER METHOD (,I2,37H ADI ITERATIONS PER OUTER ITERATION)./
2 9X,40HADJOINT FIXED SOURCE EIGENVALUE PROBLEM.)
610 FORMAT(/23H GPTAFL: CONVERGENCE IN,I4,12H ITERATIONS.)
620 FORMAT(//52H GPTAFL: GENERALIZED ADJOINT CORRESPONDING TO THE GR,
1 3HOUP,I4//(5X,1P,8E14.5))
END
|